U.P. TECHNICAL UNIVERSITY, LUCKNOW

Syllabus

3rd Year

[Effective from session 2015-16]

1. B. Tech. Mechanical Engineering
2. B. Tech. Production Engineering
3. B. Tech. Industrial & Production Engineering
4. B. Tech. Mechanical & Industrial Engineering
U.P. TECHNICAL UNIVERSITY, LUCKNOW
STUDY & EVALUATION SCHEME
B. Tech. Mechanical Engineering
Effective from Session 20015-16
YEAR III, SEMESTER-V

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Name of the Subject</th>
<th>Periods</th>
<th>Evaluation Scheme</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td>Sessional Assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CT TA Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ESE</td>
<td>Subject Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Credit</td>
<td></td>
</tr>
<tr>
<td>THEORY SUBJECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>NME-501</td>
<td>Machine Design-I</td>
<td>2 1 0</td>
<td>15 10 25</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>NME-502</td>
<td>Kinematics of Machines</td>
<td>3 1 0</td>
<td>30 20 50</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>NME-503</td>
<td>Manufacturing Science-II</td>
<td>3 1 0</td>
<td>30 20 50</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>NME-504</td>
<td>Heat & Mass Transfer</td>
<td>3 1 0</td>
<td>30 20 50</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>NME-505</td>
<td>I.C. Engines & Compressors</td>
<td>3 1 0</td>
<td>30 20 50</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>NHU-501</td>
<td>Engineering and Managerial Economics</td>
<td>2 0 0</td>
<td>15 10 25</td>
<td>50</td>
</tr>
<tr>
<td>PRACTICAL/DESIGN/DRAWING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NME-551</td>
<td>Machine Design-I Lab</td>
<td>0 0 2</td>
<td>10 10 20</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>NME-552</td>
<td>Seminar</td>
<td>0 0 2</td>
<td>-- -- 50</td>
<td>--</td>
</tr>
<tr>
<td>9</td>
<td>NME-553</td>
<td>Manufacturing Science-II Lab</td>
<td>0 0 3</td>
<td>10 10 20</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>NME-554</td>
<td>Heat & Mass Transfer Lab</td>
<td>0 0 3</td>
<td>10 10 20</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>GP-501</td>
<td>General Proficiency</td>
<td>-- -- --</td>
<td>-- -- 50</td>
<td>--</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>16 5 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
U.P. TECHNICAL UNIVERSITY, LUCKNOW
STUDY & EVALUATION SCHEME
B. Tech. Mechanical Engineering
[Effective from Session 20015-16]
YEAR III, SEMESTER-VI

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Name of the Subject</th>
<th>Periods</th>
<th>Evaluation Scheme</th>
<th></th>
<th></th>
<th>Subject Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Sessional Assessment</td>
<td>ESE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT</td>
<td>TA</td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td>NME-602</td>
<td>Machine Design-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>30</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>NME-603</td>
<td>Dynamics of Machines</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>30</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>NME-604</td>
<td>Refrigeration & Air-conditioning</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>30</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>NME-011 to</td>
<td>Departmental Elective - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>30</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>NME-014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NME-021 to</td>
<td>Departmental Elective - II</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>15</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>NME-024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NHU-601</td>
<td>Industrial Management</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NME-651</td>
<td>Fluid Machinery Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>NME-652</td>
<td>Machine Design-II Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>NME-653</td>
<td>Theory of Machines Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>NME-654</td>
<td>Refrigeration & Air Conditioning</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>GP-601</td>
<td>General Proficiency</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note- 4 to 6 Weeks Industrial Training-II after VI semester also to be evaluated in VII semester

Departmental Electives:

Department Elective - I
1. NME-011 Engineering Optimization
2. NME-012 Finite Element Methods
3. NME-013 Mechanical Vibrations
4. NME-014 Mechatronics

Department Elective - II
1. NME-021 Fluid Machinery
2. NME-022 Product Design & Development
3. NME-023 Reliability Engineering
4. NME-024 Unconventional Manufacturing Processes
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Name of the Subject</th>
<th>Periods</th>
<th>Evaluation Scheme</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>NME-501</td>
<td>Machine Design-I</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NME-502</td>
<td>Kinematics of Machines</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NME-503</td>
<td>Manufacturing Science-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NME-504</td>
<td>Heat & Mass Transfer</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NPI-501</td>
<td>Production Planning & Control</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>NHU-501</td>
<td>Engineering and Managerial Economics</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NME-551</td>
<td>Machine Design-I Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>NME-552</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>NME-553</td>
<td>Manufacturing Science-II Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>NME-554</td>
<td>Heat & Mass Transfer Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>GP-501</td>
<td>General Proficiency</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>
U.P. TECHNICAL UNIVERSITY, LUCKNOW

STUDY & EVALUATION SCHEME

B. Tech. Production Engineering / Industrial & Production Engineering / Mechanical & Industrial Engineering

[Effective from Session 20015-16]

YEAR III, SEMESTER-VI

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Name of the Subject</th>
<th>Periods</th>
<th>Evaluation Scheme</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td>Sessional Assessment</td>
<td>ESE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT TA Total</td>
<td>Subject Total</td>
</tr>
<tr>
<td></td>
<td>NME-602</td>
<td>Machine Design-II</td>
<td>3 1 0</td>
<td>30 20 50 100</td>
<td>150 4</td>
</tr>
<tr>
<td></td>
<td>NME-603</td>
<td>Dynamics of Machines</td>
<td>3 1 0</td>
<td>30 20 50 100</td>
<td>150 4</td>
</tr>
<tr>
<td></td>
<td>NPI-601</td>
<td>Principles of Machine Tool Design</td>
<td>3 1 0</td>
<td>30 20 50 100</td>
<td>150 4</td>
</tr>
<tr>
<td></td>
<td>NME-011 to NME-015</td>
<td>Departmental Elective - I</td>
<td>3 1 0</td>
<td>30 20 50 100</td>
<td>150 4</td>
</tr>
<tr>
<td></td>
<td>NME-021 to NME-024</td>
<td>Departmental Elective - II</td>
<td>2 1 0</td>
<td>15 10 25 50</td>
<td>75 3</td>
</tr>
<tr>
<td></td>
<td>NHU-601</td>
<td>Industrial Management</td>
<td>2 0 0</td>
<td>15 10 25 50</td>
<td>75 2</td>
</tr>
</tbody>
</table>

THEORY SUBJECT

PRACTICAL/DESIGN/DRAWING

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Name of the Subject</th>
<th>Periods</th>
<th>Evaluation Scheme</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>NME-651</td>
<td>Fluid Machinery Lab</td>
<td>0 0 3</td>
<td>10 10 20 30 50</td>
<td>1</td>
</tr>
<tr>
<td>NME-652</td>
<td>Machine Design-II Lab</td>
<td>0 0 2</td>
<td>10 10 20 30 50</td>
<td>1</td>
</tr>
<tr>
<td>NME-653</td>
<td>Theory of Machines Lab</td>
<td>0 0 2</td>
<td>10 10 20 30 50</td>
<td>1</td>
</tr>
<tr>
<td>NPI-651</td>
<td>Machine Tool Design Lab</td>
<td>0 0 3</td>
<td>10 10 20 30 50</td>
<td>1</td>
</tr>
<tr>
<td>GP-601</td>
<td>General Proficiency</td>
<td></td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>16 5 10</td>
<td></td>
<td>1000 25</td>
</tr>
</tbody>
</table>

Note- 4 to 6 Weeks Industrial Training-II after VI semester also to be evaluated in VII semester

Departmental Electives:

Department Elective - I

1. NME-011 Engineering Optimization
2. NME-012 Finite Element Methods
3. NME-013 Mechanical Vibrations
4. NME-014 Mechatronics

Department Elective - II

1. NME-021 Fluid Machinery
2. NME-022 Product Design & Development
3. NME-023 Reliability Engineering
4. NME-024 Unconventional Manufacturing Processes
UNIT I
Introduction
Definition, Design requirements of machine elements, Design procedure, Standards in design, Selection of preferred sizes, Indian Standards designation of carbon & alloy steels, Selection of materials for static and fatigue loads.

Design for Static Load
Modes of failure, Factor of safety, Principal stresses, Stresses due to bending and torsion, Theory of failure.

UNIT II
Design for Fluctuating Loads
Cyclic stresses, Fatigue and endurance limit, Stress concentration factor, Stress concentration factor for various machine parts, Notch sensitivity, Design for finite and infinite life, Soderberg, Goodman & Gerber criteria.

Riveted Joints
Riveting methods, materials, Types of rivet heads, Types of riveted joints, Caulking and Fullering, Failure of riveted joint, Efficiency of riveted joint, Design of boiler joints, Eccentric loaded riveted joint.

UNIT III
Shafts
Cause of failure in shafts, Materials for shaft, Stresses in shafts, Design of shafts subjected to twisting moment, bending moment and combined twisting and bending moments, Shafts subjected to fatigue loads, Design for rigidity.

Keys and Couplings
Types of keys, splines, Selection of square & flat keys, Strength of sunk key, Couplings, Design of rigid and flexible couplings.

UNIT IV
Mechanical Springs
Types, Material for helical springs, End connections for compression and tension helical springs, Stresses and deflection of helical springs of circular wire, Design of helical springs subjected to static and fatigue loading.

Power Screws
Forms of threads, multiple threads, Efficiency of square threads, Trapezoidal threads, Stresses in screws, Design of screw jack

Note: Design data book is allowed in the examination

Books and References:
4. Design of Machine Elements, Sharma and Purohit, PHI.
5. Machine design-M.F. Spott, Prentice Hall India
NME-502 : KINEMATICS OF MACHINES

Unit I
Introduction, mechanisms and machines, kinematics and kinetics, types of links, kinematic pairs and their classification, types of constraint, degrees of freedom of planar mechanism, Grubler’s equation, mechanisms, inversion of four bar chain, slider crank chain and double slider crank chain.

Velocity analysis:
Introduction, velocity of point in mechanism, relative velocity method, velocities in four bar mechanism, slider crank mechanism and quick return motion mechanism, rubbing velocity at a pin joint, instantaneous center method, types and locations of instantaneous center, Kennedy’s theorem, velocities in four bar mechanism and slider crank mechanism.

Unit II
Acceleration analysis:
Introduction, acceleration of a point on a link, acceleration diagram, Corioli’s component of acceleration, crank and slotted lever mechanism, Klein’s construction for slider crank mechanism and four bar mechanism, analytical method for slider crank mechanism.

Kinematic synthesis of mechanism:
Introduction, dimensional synthesis of mechanisms, motion, path and function generation, Chebyshev spacing, three position synthesis, graphical approach for four link mechanisms, straight line mechanisms, special mechanisms – indicator diagram mechanisms, steering mechanisms, Hook’s Joint

Unit III
Cams
Introduction, classification of cams and followers, cam profiles for knife edge, roller and flat faced followers for uniform velocity, uniform acceleration, simple harmonic and cycloidal motions of follower. Analytical methods for cam profile.

Unit IV
Gears and gear trains
Introduction, classification of gears, law of gearing, tooth forms and their comparisons, systems of gear teeth, length of path of contact, contact ratio, interference and undercutting in involute gear teeth, minimum number of teeth on gear and pinion to avoid interference, simple, compound, reverted and planetary gear trains, sun and planet gear train.

Unit V
Friction drives
Introduction, belt and rope drives, open and crossed belt drives, velocity ratio, slip, power transmission, effect of mass of belt on power transmission, maximum power transmission, initial tension and maximum tension, pivots and collars, uniform pressure and uniform wear, clutches.

Books:
5. Theory of Machines: S S Rattan, McGraw Hill
6. Theory of Machines: Thomas Bevan, Pearson

<table>
<thead>
<tr>
<th>NME-503: MANUFACTURING SCIENCE-II</th>
<th>L T P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit I</td>
<td></td>
</tr>
<tr>
<td>Metal Cutting</td>
<td>3 1 0</td>
</tr>
<tr>
<td>Mechanics of metal cutting.</td>
<td></td>
</tr>
</tbody>
</table>

Unit-II	
Machine Tools	
(i) Lathe: Principle, construction, types, operations, Turret/capstan, semi/Automatic, Tool layout	2
(ii) Shaper, slotter, planer: Construction, operations & drives.	2
(iii) Milling: Construction, Milling cutters, up & down milling. Dividing head & indexing. Max chip thickness & power required.	1
(iv) Drilling and boring: Drilling, boring, reaming tools. Geometry of twist drills.	2

Unit-III	
Grinding & Super finishing	4
(ii) Super finishing: Honing, lapping and polishing.	1

| **Limits, Fits & Tolerance and Surface roughness:** | 3 |
| Introduction to Limits, Fits, Tolerances and IS standards, Limit-gauges, and surface-roughness. | 3 |

| **Unit-IV** | |
| **B. Metal Joining (Welding)** | |

| **Unit-V** | |
| **C. Introduction to Unconventional Machining and Welding** | |
Need & benefits, application and working principle of EDM, ECM, LBM, EBM, USM, AJM, WJM. Similarly, non-conventional welding applications such as LBW, USW, EBW, Plasma-arc welding, Diffusion welding, Explosive welding/cladding. Introduction to Hybrid machining processes.

Books and References:
5. Production Engineering Science - P.C. Pandey ,Standard Publishers Distributors,
10. Advanced Machining Process - VK Jain , Allied Publishers
11. Manufacturing Engineering & Technology, -Kalpakjian, Pearson

NME-504 HEAT & MASS TRANSFER

UNIT-1
Introduction to Heat Transfer:

Conduction :
General differential heat conduction equation in the rectangular, cylindrical and spherical coordinate systems. Initial and boundary conditions.

Steady State one-dimensional Heat conduction :
Simple and Composite Systems in rectangular, cylindrical and spherical coordinates with and without energy generation; Concept of thermal resistance. Analogy between heat and electricity flow; Thermal contact resistance and over all heat transfer coefficient; Critical radius of insulation.

UNIT-2
Fins:
Heat transfer from extended surfaces, Fins of uniform cross-sectional area; Errors of measurement of temperature in thermometer wells.

Transient Conduction:
Transient heat conduction; Lumped capacitance method; Time constant; Unsteady state heat conduction in one dimension only, Heisler charts.

UNIT-3
Forced Convection:
Basic concepts; Hydrodynamic boundary layer; Thermal boundary layer; Approximate integral boundary layer analysis; Analogy between momentum and heat transfer in turbulent flow over a flat surface; Mixed
boundary layer; Flow over a flat plate; Flow across a single cylinder and a sphere; Flow inside ducts; Thermal entrance region, Empirical heat transfer relations; Relation between fluid friction and heat transfer; Liquid metal heat transfer.

Natural Convection:
Physical mechanism of natural convection; Buoyant force; Empirical heat transfer relations for natural convection over vertical planes and cylinders, horizontal plates and cylinders, and sphere, Combined free and forced convection.

UNIT-4
Thermal Radiation:
Basic radiation concepts; Radiation properties of surfaces; Black body radiation Planck’s law, Wein’s displacement law, Stefan Boltzmann law, Kirchoff’s law; Gray body; Shape factor; Black-body radiation; Radiation exchange between diffuse non black bodies in an enclosure; Radiation shields; Radiation combined with conduction and convection; Absorption and emission in gaseous medium; Solar radiation; Green house effect.

UNIT-5
Heat Exchanger:
Types of heat exchangers; Fouling factors; Overall heat transfer coefficient; Logarithmic mean temperature difference (LMTD) method; Effectiveness-NTU method; Compact heat exchangers.

Condensation and Boiling:
Introduction to condensation phenomena; Heat transfer relations for laminar film condensation on vertical surfaces and on outside & inside of a horizontal tube; Effect of non-condensable gases; Dropwise condensation; Heat pipes; Boiling modes, pool boiling; Hysteresis in boiling curve; Forced convection boiling.

Introduction to Mass Transfer:
Introduction; Fick's law of diffusion; Steady state equimolar counter diffusion; Steady state diffusion though a stagnant gas film.

Books:
1. Fundamentals of Heat and Mass Transfer, by Incroperra & DeWitt, John Wiley and Sons
3. Heat Transfer by J.P. Holman, McGraw-Hill
4. Heat and Mass Transfer by Rudamooorthy and Mayilasamy, Pearson Education
5. Heat Transfer by Ghoshdastidar, Oxford University Press
7. Heat Transfer by Venkateshan, Ane Books Pvt Ltd
Unit-I
Introduction to I.C Engines: Engine classification and basic terminology, Two and four stroke engines, SI and CI engines, Valve timing diagram.
Thermodynamic analysis of Air standard cycles, Otto cycle, Diesel cycle, Dual cycle, Stirling cycle, Ericsson cycles, Comparison of Otto, Diesel and Dual cycles
Fuel air cycle, factors affecting the fuel air cycle, Actual cycle.

Unit–II
SI Engines: Combustion in SI engine, Flame speed, Ignition delay, Abnormal combustion and it's control, Combustion chamber design for SI engines.
Carburetion, Mixture requirements, Carburetors and fuel injection system in SI Engine
Ignition system requirements, Magneto and battery ignition systems, ignition timing and spark plug, Electronic ignition, Scavenging in 2 Stroke engines, Supercharging and its effect

Unit–III
CI Engine: Combustion in CI engines, Ignition delay, Knock and it's control, Combustion chamber design of CI engines.
Fuel injection in CI engines, Requirements, Types of injection systems, Fuel pumps, Fuel injectors, Injection timings
Exhaust emissions from SI engine and CI engine and it's control

Unit–IV
Engine Cooling and Lubrication: Different cooling systems, Radiators and cooling fans, Engine friction, Lubrication principle, Type of lubrication, Lubrication oils, Crankcase ventilation.
Testing and Performance: Performance parameters, Basic measurements, Blow by measurement, Testing of SI and CI engines

Unit V
Compressors: Classification, Reciprocating compressors, Single and Multi stage compressors, Intercooling, Volumetric efficiency.
Rotary compressors, Classification, Centrifugal compressor, Axial compressors, Surging and stalling, Roots blower, Vaned compressor.

BOOKS:
2. Fundamentals of Internal Combustion Engines by H.N. Gupta, Prentice Hall of India
4. I.C Engine Analysis & Practice by E.F Obert.
7. Reciprocating and Rotary Compressors, by Chlumsky, SNTI Publications, Czechoslovakia

NPI-501: PRODUCTION PLANNING & CONTROL L T P
Unit-I
Introduction:
Types and characteristics of Manufacturing systems and Production systems, Objective and functions of Production, Planning & Control, organization

Preplanning:
Forecasting & Market Analysis. Factory Location & Layout, Equipment policy and replacement. Preplanning production, capacity planning

Unit-II
Production Planning:
Product development and design. BEP, profit volume chart, Material Resource Planning, Selection of material, methods, machines & manpower. Routing, Loading, Scheduling, Job shop scheduling, sequencing of production operation, line balancing

Unit-III
Production Control:
Dispatching rules, dispatching of work card, move card, inspection card and reports, Control boards and charts. Expediting, progress reporting, corrective action, change in schedules.

Unit-IV
Evaluation and Analysis:
Elements of network and its development, Introduction to CPM and PERT techniques.

UNIT-V
Material Planning and Control:
Field and scope, material planning, inventories, types and classification, ABC analysis, economic lot (batch) size, lead time and reorder point, modern trends in purchasing, store keeping, store operations, Introduction to manufacturing resource planning (MRP) and enterprise resource planning (ERP)

Books and References:
5. Production Planning and Inventory Management by J.F. Magee & David Morris BOODMAN, McGraw Hill.

NME-551 : MACHINE DESIGN-I Lab

Minimum eight experiments out of the following are to be performed.

Students are advised to use design data book for the design. Drawing shall be made wherever necessary on small drawing sheets

1. Design & drawing of Cotter joint.
2. Design & drawing of Knuckle joint
3. Design of machine components subjected to combined steady and variable loads
4. Design of eccentrically loaded riveted joint
5. Design of boiler riveted joint
6. Design of shaft for combined constant twisting and bending loads
7. Design of shaft subjected to fluctuating loads
8. Design and drawing of flanged type rigid coupling
9. Design and drawing of flexible coupling
10. Design and drawing of helical spring
11. Design and drawing of screw jack

NME-553 : MANUFACTURING SCIENCE -II – LAB

Minimum eight experiments out of the following along-with study of the machines / processes
1. Shear-angle determination (using formula) with tube cutting (for orthogonal) on lathe machine.
2. Bolt (thread) making on Lathe machine
3. Tool grinding (to provide tool angles) on tool-grinder machine.
5. Machining a block on shaper machine.
7. Drilling holes on drilling machine and study of twist-drill.
8. Study of different types of tools and its angles & materials.
9. Experiment on tool wear and tool life.
10. Experiment on jigs/Fixtures and its uses
11. Gas welding experiment
12. Arc welding experiment
14. Soldering & Brazing experiment
15. Experiment on unconventional machining.
16. Experiment on unconventional welding.
17. Experiment on TIG/MIG Welding.
18. Macro and Microstructure of welding joints.
Minimum eight experiment of the following
1. Conduction – Experiment on Composite plane wall
2. Conduction – Experiment on Composite cylinder wall
3. Conduction - Experiment on critical insulation thickness
4. Conduction – Experiment on Thermal Contact Resistance
5. Convection - Pool Boiling experiment
6. Convection - Experiment on heat transfer from tube-(natural convection).
10. Convection - Determination of thermal conductivity of fluid
11. Experiment on Stefan's Law, on radiation determination of emissivity, etc.
12. Experiment on solar collector, etc.
13. Heat exchanger - Parallel flow experiment
14. Heat exchanger - Counter flow experiment

UNIT I
Principle of transmission and conjugate action
Spur Gears
Tooth forms, System of gear teeth, contact ratio, Standard proportions of gear systems, Interference in involute gears, Backlash, Selection of gear materials, Gear manufacturing methods, Design considerations, Beam strength of gear tooth, Dynamic tooth load, Wear strength of gear tooth, Failure of gear tooth, Design of spur gears, AGMA and Indian standards.

Helical Gears
Terminology, Proportions for helical gears, Forces components on a tooth of helical gear, Virtual number of teeth, Beam strength& wear strength of helical gears, Dynamic load on helical gears, Design of helical gears.

UNIT II
Bevel gears
Terminology of bevel gears, Force analysis, Virtual number of teeth, Beam strength and wear strength of bevel gears, Effective load of gear tooth, Design of a bevel gear system.

Worm Gears
Types of worms, Terminology, Gear tooth proportions, Efficiency of worm gears, Heat dissipation in worm gearing, Strength and wear tooth load for worm gears, Design of worm gearing system.
UNIT III
Sliding Contact Bearing

UNIT IV
Rolling Contact Bearing
Advantages and disadvantages, Types of ball bearing, Thrust ball bearing, Types of roller bearing, Selection of radial ball bearing, Bearing life, Selection of roller bearings, Dynamic equivalent load for roller contact bearing under constant and variable loading, Reliability of Bearing, Selection of rolling contact bearing, Lubrication of ball and roller bearing, Mounting of bearing 6

UNIT V
IC ENGINE parts,
Selection of type of IC engine, General design considerations, Design of cylinder and cylinder head; Design of piston and its parts like piston ring and gudgeon pin etc.; Design of connecting rod; Design of crankshaft 10

Note: Design data book is allowed in the examination

Books and References:
4. Design of Machine Elements, Sharma and Purohit, PHI.
5. Machine design-M.F. Spott, Prentice Hall India

NME-603 : DYNAMICS OF MACHINES

Unit I
Force analysis:
Static force analysis of mechanisms, D’Alembert’s Principle, dynamics of rigid link in plane motion, dynamic force analysis of planar mechanisms, piston force and crank effort. Turning moment on crankshaft due to force on piston, Turning moment diagrams for single cylinder double acting steam engine, four stroke IC engine and multi-cylinder engines, Fluctuation of speed, Flywheel. 7

Unit II
Gyroscope:
Space motion of rigid bodies, angular momentum, gyroscopic couples, gyroscopic stabilization, ship stabilization, stability of four wheel and two wheel vehicles moving on curved paths. 4
Mech. Vibrations:

Unit III
Balancing:
Introduction, static balance, dynamic balance, balancing of rotating masses, two plane balancing, graphical and analytical methods, balancing of reciprocating masses, balancing of single cylinder engine, balancing of multi cylinder inline engines.

Unit IV
Governors:
Introduction, types of governors, characteristics of centrifugal governors, gravity controlled and spring controlled centrifugal governors, hunting of centrifugal governors, inertia governors. Effort and Power of governor, Controlling force diagrams for Porter governor and spring controlled governors.

Unit V
Brakes and dynamometers:
Introduction, Law of friction and types of lubrication, types of brakes, effect of braking on rear and front wheels of a four wheeler, dynamometers, belt transmission dynamometer, torsion dynamometer, hydraulic dynamometer

Text/Reference Books:

NME-604 : REFRIGERATION & AIR CONDITIONING

Unit-1
Refrigeration:
Introduction to refrigeration system, Methods of refrigeration, Carnot refrigeration cycle, Unit of refrigeration, Refrigeration effect & C.O.P.

Air Refrigeration cycle:
Open and closed air refrigeration cycles, Reversed Carnot cycle, Bell Coleman or Reversed Joule air refrigeration cycle, Aircraft refrigeration system, Classification of aircraft refrigeration system. Boot strap refrigeration, Regenerative, Reduced ambient, Dry air rated temperature (DART).
Unit-2
Vapour Compression System:
Single stage system, Analysis of vapour compression cycle, Use of T-S and P-H charts, Effect of change in suction and discharge pressures on C.O.P, Effect of sub cooling of condensate & superheating of refrigerant vapour on C.O.P of the cycle, Actual vapour compression refrigeration cycle, Multistage vapour compression system requirement, Removal of flash gas, Intercooling, Different configuration of multistage system, Cascade system.

Unit-3
Vapour Absorption system;

Refrigerants:
Classification of refrigerants, Nomenclature, Desirable properties of refrigerants, Common refrigerants, Secondary refrigerants and CFC free refrigerants. Ozone layer depletion and global warming considerations of refrigerants.

Unit-4
Air Conditioning:
Introduction to air conditioning, Psychometric properties and their definitions, Psychometric chart, Different Psychometric processes, Thermal analysis of human body, Effective temperature and comfort chart, Cooling and heating load calculations, Selection of inside & outside design conditions, Heat transfer through walls & roofs, Infiltration & ventilation, Internal heat gain, Sensible heat factor (SHF), By pass factor, Grand Sensible heat factor (GSHF), Apparatus dew point (ADP). Air Washers, Cooling towers & humidifying efficiency.

Unit-5
Refrigeration Equipment & Application:
Elementary knowledge of refrigeration & air conditioning equipments e.g compressors, condensers, evaporators & expansion devices, Food preservation, Cold storage, Refrigerates Freezers, Ice plant, Water coolers, Elementary knowledge of transmission and distribution of air through ducts and fans, Basic difference between comfort and industrial air conditioning.

Books:
1. Refrigeration and Air conditioning by C.P Arora, McGraw-Hill
3. Refrigeration and Air conditioning by R. C. Arora, PHI
6. Refrigeration and Air conditioning by Arora & Domkundwar. Dhanpat Rai
Unit-I
Introduction: Developments in machine tools, types of machine tools surface, profits and paths produced by machine tools. Features of construction and operations of basic machine tools e.g. lathe, drill, milling shapes and planers, grinding machine etc. General requirement of machine tool design. Machine tool design process. Tool wear, force Analysis.

Unit-II
Machine Tools Drives: Classification of machine tool drives, group Vs individual drives, election of electric motor, A brief review of the elements of mechanical transmission e.g. gear, belt and chain drives, slider-crank mechanism, cam mechanism, nut & Screw transmission, Devices for intermittent motion, reversing & differential mechanisms. Couplings and clutches Elements of hydraulic transmission system. e.g. pumps, cylinder, directional control valves, pressure valves etc. Fundamentals of Kinematics structure of machine tools.

Unit-III
Regulation of Speed and Feed rates: Laws of stepped regulation, selection of range ratio, standard progression ratio, selection of best possible structural diagram, speed chart, Design of feed box, Developing gearing diagrams. Stepless regulation of speed and feed in machine tool, speed and feed control.

Unit-IV
Design of Machine Tool Structure: Requirements and design criteria for machine tool structures, selection of material Basic design procedure for machine tool structures, design of bed, column and housing, Model technique in design.

Layout of bearings, selection of bearings machine tools

Unit-V
Dynamics of machine tools: General procedure for assessing the dynamic stability of cutting process, closed loop system, chatter in machine tools.

Books:

NME-011 : ENGINEERING OPTIMIZATION

UNIT I
Introduction:
Historical Developments, and Review of Engineering applications of Optimization Techniques

Linear Programming:
Simplex method, Revised simplex method, Two phase method, Duality, Dual simplex method, Integer linear programming, 0-1 integer linear programming, solution by branch and bound method.

UNIT II

UNIT-III
Constrained Optimization Techniques: Introduction, Direct methods - Cutting plane method and Method of Feasible directions, Indirect methods - Convex programming problems, Exterior penalty function method, Examples and problems

UNIT-IV

UNIT-V

Books and References:

1. Engineering Optimization by Ravindran, Wiley India
2. Engineering Optimization: Theory and Application by S S Rao, Wiley India
3. Linear and Non Linear Programming by Luenberger, Narosa

NME-012: FINITE ELEMENT METHODS

Unit 1
Introduction, exact solution vs approximate solution, principle of FEM, general procedure for finite element analysis, pre-processing, solution, post-processing, various approximate methods, weighted residual method, variational or Rayleigh Ritz method, principle of minimum potential energy.
Review of matrices, definition, types, addition or subtraction, multiplication, inverse of a matrix, calculus of matrix.

Unit II
Direct stiffness methods, linear spring as finite element, direct formulation of uni-axial bar, truss and
beam elements, local and global coordinates, nodes and elements, stiffness matrix, formulation of global stiffness matrix, application of boundary conditions and forces, essential and natural boundary conditions, elimination method, penalty methods, calculation of element stresses and strains.

Unit III
Finite element formulation of 1-d problems, method of weighted residuals, strong and weak form, the Galerkin finite element method, application of Galerkin’s method to uni-axial bar and truss elements, Galerkin method for one dimensional heat conduction problems like heat transfer through wall, heat transfer through fin etc., one dimensional conduction with convection.

Unit IV
Interpolation or shape functions, compatibility, completeness and convergence requirements, shape functions for one and two dimensional elements, finding shape function using Lagrange polynomials. Application of FEM in scalar field problems, heat transfer in two dimensions, time dependent heat transfer.

Unit V
Concepts of plane stress and plain strain, displacement relation, stress-strain relations, equilibrium and compatibility equations, vector field problems, derivation of constant strain triangular element stiffness matrix and equations, treatment of body and surface forces, stress and strain computation. Practical considerations in finite element application, programming aspects, commercially available FEM packages, desirable features of a FEM packages, problem solving on a general purpose FEM software package like ANSYS, ABAQUS, NISA etc.

Books and References:

1. Fundamentals of Finite Element Analysis by David V Hutton, McGraw-Hill Learning
2. A First Course in Finite Element Method 5e by Daryl L Logan, Cengage Learning
3. Finite Element Analysis by G L Narasaiah, BS Publications.
5. Finite Element Method with Application in Engineering by Desai, Eldho and Shah, Pearson Education.
7. Introduction to Finite Elements in Engineering by Chandrupatla & Belagundu, Pearson Education.

NME-013 : MECHANICAL VIBRATIONS

UNIT - I
Introduction, Classification of Vibration Systems, Harmonic motion, Vector re|presentation of harmonic motion, Natural frequency & response, Effects of vibration, superposition of simple harmonic motions, beats, Fourier analysis-analytical and numerical methods.

UNIT - II
Single Degree Freedom: Forced Vibration Forced vibration, Harmonic excitation with viscous damping,
steady state vibrations, Forced vibrations with rotating and reciprocating unbalance, Support excitation,
Vibration isolation, Transmissibility, Vibration measuring instruments, Displacement, velocity and
acceleration measuring instruments

UNIT- III
Two Degree Freedom systems Introduction, Principal modes, Double pendulum, Torsional system with
damping, Coupled system, Principle of vibration absorber, Undamped dynamic vibration absorbers,
Torsional vibration absorber, Centrifugal pendulum absorbers, Vibration isolators and Dampers.

UNIT- IV
Multi-degree Freedom system: Exact Analysis, Undamped free and forced vibrations of multi-degree
freedom systems, influence coefficients, Reciprocal theorem, Torsional vibration of multi-degree rotor
system, Vibration of gear system, Principal coordinates, Continuous systems- Longitudinal vibrations of
bars, Torsional vibrations of circular shafts.

UNIT- V
Multi Degree Freedom system: Numerical Analysis by Rayleigh’s method, Dunkerely’s, Holzer’s and
Stodola methods, Rayleigh-Ritz method

Critical speed of shafts, Whirling of uniform shaft, Shaft with one disc with and without damping,
Multi-disc shafts, Secondary critical speed.

Books and References:
2. Mechanical Vibrations-Theory & Practice, S Bhave, Pearson Education.
6. Mechanical Vibrations – Tse, Morse & Hinkle
7. Mechanical Vibrations – V. Rama Murthy, Narosa Publications

NME-014: MECHATRONICS

Unit 1
Introduction, synergy of systems, definition of mechatronics, applications of mechatronics in design and
modeling, actuators and sensors, intelligent controls, robotics, manufacturing etc., objectives, advantages
and disadvantages of mechatronics, examples of mechatronics systems in industry.
Mechanical components in mechatronics, force, friction and lubrication, materials, mechanical behavior
of materials, mechanisms used in mechatronics, lever and four bar mechanisms, bearing, belt, chain, cam,
slider crank, clutches etc.

Unit II
Electronics elements in mechatronics, conductors, insulators and semi conductors, passive electrical
components, resistors, capacitor and inductor, transformer, active elements, semi conductor devices,
transistors and integrated circuits, digital electronics components like logic gates, flip-flops, shift register,
multiplexer and counter.
Computing elements in mechatronics, analog computer, timer, analog to digital converter, digital to
analog converter, digital computer, microprocessor and its architecture, micro-controllers, programming
logic controllers, their basic structures, mnemonics.

Unit III
System modeling and analysis, control system concepts, transfer function of physical systems, block
diagrams representation of systems, transfer function of a system, standard input signals, time response of
a first and second order systems to a step input, frequency response analysis, automatic control systems,
digital control systems.
Motion control devices, actuator types & application areas, hydraulic and pneumatic actuators, electrical
actuators, DC servomotor, AC servomotor and stepper servomotor, micro-actuators, drive selection and
applications.

Unit IV
Sensors and transducers, their static and dynamic performance characteristics, internal sensors, external
sensors and micro-sensors, sensors for displacement, position and proximity; velocity, motion, force, fluid
pressure, liquid flow, liquid level, temperature, light sensors, selection of Sensors.
Stages in designing mechatronics systems, traditional and mechatronic design, possible design solutions,
case studies of mechatronics systems, pick and place robot, automatic car park systems,
engine management systems etc.

Unit V
Mechatronics in industry, autotronics, bionics and avionics and their various applications, mechatronics in
manufacturing, features of mechatronics in manufacturing, flexible manufacturing systems,
managing automatic protocol, computer integrated manufacturing, just in time production systems,
CNC machines, adaptive control machine system, CNC machine operations, challenges in mechatronics
production units.

BOOKS & REFERENCES:
 1993.
8. Lawrence J. Kamm, “Understanding Electro – Mechanical Engineering, An Introduction to

NME-021 : FLUID MACHINERY

UNIT-I
Introduction: Impulse of Jet and Impulse Turbines:
Classification of Fluid Machines & Devices, Application of momentum and moment of
momentum equation to flow through hydraulic machinery, Euler’s fundamental equation.
Introduction to hydrodynamic thrust of jet on a fixed and moving surface (flat & curve),
Classification of turbines, Impulse turbines, Constructional details, Velocity triangles, Power and
efficiency calculations, Governing of Pelton wheel
UNIT-II
Reaction Turbines:
Francis and Kaplan turbines, Constructional details, Velocity triangles, Power and efficiency calculations, Degree of reaction, Draft tube, Cavitation in turbines, Principles of similarity, Unit and specific speed, Performance characteristics, Selection of water turbines.

UNIT-III
Centrifugal Pumps:
Classifications of centrifugal pumps, Vector diagram, Work done by impellor, Efficiencies of centrifugal pumps, Specific speed, Cavitation & separation, Performance characteristics.

UNIT-IV
Positive Displacement and other Pumps:
Reciprocating pump theory, Slip, Indicator diagram, Effect of acceleration, air vessels, Comparison of centrifugal and reciprocating pumps, Performance characteristics.
Hydraulic ram, Jet pumps, Air lift pumps.

BOOKS:
3. Fluid Mechanics and Machinery by C.S.P.Ojha, R. Berndtsson, P.N. Chandramouli, Oxford University Press
4. Fluid Mechanics and Fluid Power Engineering by D S Kumar, S K Kataria & Sons
5. Fluid Mechanics and Turbo machines by Das, PHI
6. Fluid Power with Applications, by Esposito, Pearson
7. Fluid Mechanics and hydraulic machines by Modi & Seth, Standard Book House
8. Fundamentals of Turbomachinery by Venkanna B.K., PHI

NME -022: PRODUCT DESIGN & DEVELOPMENT

UNIT I:
Introduction to Product Design, Applications, Relevance, Product Definition, Scope, Design definitions, The role and nature of design, Old and new design methods, Design by evolution vs design by innovation. Examples such evolution of bicycle, safety razor etc. Need based development, Technology based developments. Physical realisability & Economic feasibility of design concepts.

UNIT II:

UNIT III:
Transformations stage of design, Brainstorming & Synectics, Morphological techniques, Utility concept, Utility value, Utility index, Economic aspects of design, Fixed and variable costs, Break-even analysis, Product Appraisal Information and literature search, patents, standards and codes, Environment and other safety considerations in product design.

UNIT IV:
Reliability, Reliability considerations in product design, Bath tub curve, Reliability of systems in series and parallel. Failure rates, MTTF and MTBF, Optimum spares from reliability consideration, Design of displays and controls, Man-Machine interface, Compatibility of displays and controls, Ergonomic aspects of design, Anthropometric data and its importance in design.

Books and references:
3. Product Design by Otto and Wood- Pearson

NME-023: RELIABILITY ENGINEERING

UNIT-I
Introduction: Definition of reliability, Failures & failures modes, Failure rates, MTTF, MTBF, Bath tub curve, Definition and factors influencing system effectiveness, various parameters of system effectiveness.

UNIT-II
Reliability Mathematics, Definition of probability, laws of probability, conditional probability, Bay's theorem, Various probability distributions, Data collection, Recovery of data, Data analysis Procedures, Empirical reliability calculations.

UNIT-III

UNIT-IV
Reliability Improvements: Methods of reliability improvement, component redundancy, system redundancy, types of redundancies-series, parallel, series - parallel, stand by and hybrid, effect of maintenance

Reliability Testing, Life testing, requirements, methods, test planning, data reporting system, data reduction and analysis, reliability test standards.
Books & references:

NME-024 : UNCONVENTIONAL MANUFACTURING PROCESSES

UNIT-I
Introduction, Limitations of conventional manufacturing processes, Need for unconventional manufacturing processes, its classification and future possibilities, Hybrid processes

Unconventional Machining Process based on material removal by abrasion, Principle and working and applications Abrasive Jet Machining, Water Jet Machining, Abrasive Water Jet machining and Ultrasonic Machining.

UNIT-II
Thermoelectric unconventional methods, Principle, working and applications of Plasma Arc Machining, Laser Beam Machining, Electron Beam Machining etc

Working principle and applications of Electric Discharge Machining, EDM machines, EDM process characteristics, Wire electric discharge machining

UNIT-III
Electro-chemical machining processes, ECM, its working principle, advantages and applications, Electro-chemical grinding, Electro-chemical deburring, Chemical machining.
Unconventional welding processes: Explosive welding, Cladding etc., Under water welding, Metalizing, Plasma arc welding/cutting etc.

UNIT-IV
Unconventional Forming processes: Principle, working and applications of High energy forming processes such as Explosive Forming, Electromagnetic forming, Electro-discharge forming, water hammer forming, explosive compaction etc.

Books and references:

1. Modern Machining Processes – P. C. Pandey

NME-651 : FLUID MACHINERY Lab

1. Modern Machining Processes – P. C. Pandey
Minimum ten experiments out of the following along with study of the machines and processes

1. Impact of Jet experiment.
2. Experiment on Pelton wheel.
3. Experiment on Francis turbine.
4. Experiment on Kaplan turbine.
5. Experiment on Reciprocating pump.
6. Experiment on centrifugal pump.
7. Experiment on Hydraulic Jack/Press
8. Experiment on Hydraulic Brake
9. Experiment on Hydraulic Ram
10. Study through visit of any water pumping station/plant
11. Any other suitable experiment/test rig such as comparison & performance of different types of pumps and turbines.
12. Experiment on Compressor
13. Experiment for measurement of drag and lift on aerofoil in wind tunnel

NME-652 : MACHINE DESIGN-II Lab

A. Computer and Language: students are required to learn the basics of computer language such as C and C++ so that they should be able to write the computer programme (3practical turns)

B. Writing Computer programme for conventional design: Students are required to write computer program and validate it for the design of machine components done in theory subject (5practical turns)

C. Mini Project: Each student will be given a real life problem for the complete design of a subsystem/system using either manual calculation with the help of design handbook or through computer programme, if needed. This will be done as home assignment to be submitted at the end of the semester.

NME-653 : THEORY OF MACHINES LAB

Minimum eight experiments out of the following:

1. Study of simple linkage models/mechanisms
2. Study of inversions of four bar linkage
3. Study of inversions of single/double slider crank mechanisms
4. Experiment on Gears tooth profile, interference etc.
5. Experiment on Gear trains
6. Experiment on longitudinal vibration
7. Experiment on transverse vibration
8. Experiments on dead weight type governor
9. Experiment on spring controlled governor
10. Experiment on critical speed of shaft
11. Experiment on gyroscope
12. Experiment on static/dynamic balancing
13. Experiment on Brake
14. Experiment on clutch

NME-654: REFRIGERATION & AIR CONDITIONING Lab

Minimum eight experiments out of the following:
1. Experiment on refrigeration test rig and calculation of various performance parameters.
2. Study of different types of expansion devices used in refrigeration system.
3. Study of different types of evaporators used in refrigeration systems.
4. To study basic components of air-conditioning system.
5. Experiment on air-conditioning test rig & calculation of various performance parameters.
6. Experiment on air washers
7. Study of window air conditioner.
8. Study & determination of volumetric efficiency of compressor.
10. Visit of cold-storage and its detailed study.
11. Experiment on Ice-plant.
12. Experiment on two stage Reciprocating compressor for determination of volumetric efficiency, PV diagram and effect of intercooling.
14. Experiment on Desert coolers.

NPI-651: MACHINE TOOL DESIGN LAB

Minimum eight experiments out of the following:
1. Measurement and analysis of cutting forces in orthogonal turning.
2. Flank wear – time characteristics for single point cutting tools.
3. (i) Checking the level of installation of a lathe in horizontal & vertical planes
 (ii) Checking the bed ways for straightness and parallelism.
4. Testing the main spindle of a lathe for axial movement and true running.
5. Process capability determination of a center lathe.
6. Flatness checking of a surface plate.
7. A study of devices for intermittent motion used in machine tools e.g. ratchet gear & Geneva Mechanism.
9. A study of the drives for reciprocation used in machine tools.
10. Development the speed chart and gearing diagram for a gassed head lathe.
11. A study of the cone pulley drive in center lathe and development of its ray diagram for the speed structure.
12. Efficiency testing of lathe at various parameters-values.
13. Accuracy analysis of finished cylindrical work-pieces produced on a lathe.
14. Cutting (turning) with inclined placed tool (in tool fixture).
15. Turning with two simultaneously cutting tool (one from front on usual tool post and the other tool from back on tool-fixture on carriage)