
Problem Statement 

Build a real-time, open-source, modular avatar system that can listen, think, speak, and 

live-stream with sub-second latency. The avatar must be fully local or self-hosted with 

no paid APIs. The design should be generic, configurable, and easily re pursuable 

(education, support bot, campus guide, helpdesk, etc.) with minimal changes. 

Core capabilities 

• Real-time audio I/O and streaming: Capture mic input, render synthesized speech/video, 

and broadcast to viewers with WebRTC or equivalent, targeting sub-second latency. 

Prefer Janus/Ant Media Server or similar open-source media servers; RTMP/HLS can be 

provided as fallback. 

• Lip-synced talking head: Given either TTS audio or pre-recorded audio, animate a 2D 

face or 3D head with high-quality lip sync in real time; acceptable open-source options 

include Wav2Lip or MuseTalk. Support at least 24–30 FPS on a single consumer GPU. 

• Offline or self-hostable speech stack: Open-source ASR (e.g., Whisper variants) and 

open-source TTS capable of low-latency streaming synthesis; must output 

phonemes/visemes or timestamps usable for lip sync. No paid cloud TTS. 

• Reasoning/LLM: Use an open-source chat model (e.g., Llama-family via local inference). 

Allow plug-and-play to swap models and prompt templates. No paid APIs. 

• Frontend avatar rendering: Provide two interchangeable frontends: 

• 2D talking-head (image-driven) using lip-sync model output. 

• Web 3D avatar (GLB/ReadyPlayerMe spec) with blendshape/viseme mapping driven by 

phoneme timings. 

• Session orchestration: Real-time loop: mic audio → ASR → LLM → TTS (+phonemes) → 

lip-sync/3D visemes → stream to viewers. Design must support back-pressure and 

graceful degradation. 

Deliverables 

• Source code and Docker compose for all services; single command brings up the stack 

locally with GPU if available. 

• Two reference avatars: 

• 2D portrait image talking head pipeline. 

• 3D GLB avatar pipeline with viseme mapping. 

• Demo web app: 

• One-to-one conversation view (caller + avatar) and viewer broadcast mode. 

• Toggle between ASR→LLM→TTS loop and text-input mode. 



• Documentation: 

• Setup guides for Ubuntu with NVIDIA GPU, model downloads, and performance tips. 

• Architecture diagram and module interfaces to enable reuse in other projects. 

• Benchmark report: 

• Latency per stage, FPS, VRAM/CPU usage for small/medium models, and scalability 

notes. 

Acceptance criteria 

• Fully functional local demo with: live mic input, real-time response, synchronized mouth 

movements, and WebRTC live playback with sub-second to near-real-time latency. 

• No paid or proprietary APIs; all components must run from open-source projects with 

local inference. 

• Easy retargeting: Changing the avatar (new image or GLB) and swapping the LLM or TTS 

must not require code changes beyond config edits. 

• Documented deployment for CPU-only fallback and GPU-accelerated paths, with 

expected quality differences. 

Suggested open-source building blocks (non-binding) 

• Streaming: Janus Gateway or Ant Media Server Community for WebRTC; fallback RTMP 

ingest to server. 

• Lip-sync: Wav2Lip, MuseTalk; optional CodeFormer/ESRGAN for quality. 

• ASR: Whisper variants (local). 

• TTS: Open-source TTS with phoneme/timestamp support or alignment workflow. 

• 3D frontend: Three.js with ReadyPlayerMe-style GLB and viseme mapping. 

This framing keeps it generic, reusable, and fully open-source, while supporting live 

streaming, lip-sync, and GPU acceleration for real-time performance. 

 


