

KIET Group of Institutions, Ghaziabad Department of Information Technology (NBA Accredited)

(An ISO – 9001: 2015 Certified & 'A+' Grade accredited Institution by NAAC)

Course Outcome

Session 2021-2022

Even Semester

Department of Information

Technology

13 KM STONE, GHAZIABAD-MEERUTROAD, GHAZIABAD-201206

Website:www.kiet.edu

Index

		4 th Semester
SNo.	SubjectCode	SubjectName
1	KOE044	Sensor & Instrumentation
2	KAS401	Technical Communication
3	KCS402	Theory of Automata & Formal Language
4	KCS401	Operating System
5	KIT401	Web Designing
6	KNC402	Python Programming
7	KCS451	Operating Systems Lab
8	KIT451	Web Designing Lab
9	KCS453	Python Programming Lab

		6 th Semester
SNo.	SubjectCode	SubjectName
1	KCS601	Software Engineering
2	KIT601	Data Analytics
3	KCS603	Computer Networks
4	KIT061	Blockchain Architecture Design
5	KOE061	Real Time Systems
6	KNC602	Indian Tradition ,Culture and Society
7	KCS651	Software Engineering Lab
8	KIT651	Data Analytics Lab
9	KCS653	Computer Networks Lab

		8 th Semester
SNo.	SubjectCode	SubjectName
1	KHU801	Rural Development
2	KOE081	Cloud Computing
3	KOE097	Big Data
4	KIT851	Project

$CO and Mapping\ of CO-PO2^{nd} Year$

(2020-2024BATCH)

Session: -2021-22Semester:-4th

S.No.	Subject	Code
1	Sensor &Instrumentation	KOE044
2	Technical Communication	KAS401
3	Theory of Automata &Formal Language	KCS402
4	Operating System	KCS401
5	Web Designing	KIT401
6	Python Programming	KNC402
7	Operating Systems Lab	KCS451
8	Web Designing Lab	KIT451
9	Python Programming Lab	KCS453

Theory

					At the	end of co	urse, stud	lents will	l be able	to:					Bloom's Taxonomy Knowledge Dimension
	CO1	Apply the u	ise sensors	for meas	urement o	of displace	ement, for	rce and pr	ressure.						K3 C,P
Sensor	CO2	Employ con sensor,flow	-	ed sensor	s in indus	try for m	easureme	nt of temp	perature, j	position,	acceleron	neter, vib	ration		K3 P,M
&Instrumen	&Instrumen CO3 Demonstrate the use of virtual instrumentation in automation industries.												K2 C,P		
tation(KOE 044)	CO4	Identify and use data acquisition methods.													K3 F,C
·	CO5	Comprehend intelligent instrumentation in industrial automation.													K2 C,P
CO \ PO	-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Mapping															
CO1		3	2	2	2	1	-	-	-	-	1	1	1	2	2
CO2		2 3 3 2 1 1 1 1 2											2		
CO3		2 2 3 3 1 1 1 1 2												2	
CO4		2	3	3	2	1	-	-	-	-	1	1	1	1	1
CO5		1	3	2	3	1	-	-	-	-	1	1	1	1	1

					At the	end of co	urse, stu	dents wil	l be able	to:					Bloom's Taxonomy Knowledge Dimension	
	CO1	Analyze the	nature an	d objectiv	es of Tec	hnical Co	ommunica	ation relev	vant for w	orkplace	as Engine	eer.			K4 F,C	
Technical Communica	CO2	Utilizing the dimensions.	Technica	l Writing	Skills for	r the purp	ose of Te	chnical C	Communic	cation and	l its expos	sure in va	rious		K3 C,P	
tion (TA CAO1)	CO3	Imbibe prese	entation st	rategies i	nputs witl	h confide	nce in fac	ing diver	se audien	ce in requ	iired situa	tions at v	workplac	ce.	K3 C,P,M	
(KAS401)	CO4		timate the application of Technical Communication to promote their competence for various media like report neration, resume design, GD, and Interview etc.													
	CO5	Evaluate Vo	Evaluate Voice dynamics and select appropriate cues for their own efficacy as fluent and efficient communicators.													
CO/PO	•	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
Mapping																
CO1		-	-	-	-	-	-	-	-	2	3	-	3	-	-	
CO2											-					
CO3		-	-	-	-	-	-	-	-	2	3	-	3	-	-	
CO4		-	-	-	-	-	-	-	-	2	3	-	3	-	-	
CO5	CO5										-					

					At the	end of co	urse, stu	dents wil	l be able	to:					Bloom's Taxonomy Knowledge Dimension
	CO1	Acquire a fu	ll underst	anding an	d applica	bility of A	Automata	Theory a	s the basi	s of all co	omputer s	cience la	nguages	design	K1,K2 F,C
Theory of	CO2	Identify diffe	erent form	nal langua	ige and de	esign the	recognize	r for regu	ılar langu	ages to es	stablish th	eir applic	ability i	n real	K3 C,P
Automata	Automata CO3 Ability to analyze & Design grammars for different formal languages												K4 M		
&Formal	CO4	Understand t	he design	ing of Pu	shdown A	Automata	and Turi	ng machi	nes						K5 F,P
Language (KCS402)	CO5	Determine th	ne decidat	oility and	intractabi	lity of co	mputatio	nal proble	ems						K5,K6 M
CO\PO Mapping		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	2	2	2	1					1	1	1	2	2
CO2		2	2 3 3 2 1 1 1 1 1 2												2
CO3		2	2 2 3 3 1 1 1 1 2												2
CO4		2													1
CO5		1	3	2	3	1					1	1	1	1	1

				At th	e end of	course, s	tudents w	ill be abl	e to:						Bloom' Taxonomy Knowledge Dimension	
	CO1	Illustrate	e the need,	evolution	, various	categories	s and desig	gn issues	of operati	ing syster	ns.				K2,K3 F,C	
	CO2	Analyze	the proble	ms related	to concu	irrency ar	nd the diffe	erent sync	chronizati	on mech	anism ava	ilable.			K4 C,P	
Operating System	System scheduling. CCS401)												K5 P,M			
(KCS4 01)	CO4	Analyze	alyze the various memory management techniques for memory allocation and concept of virtual memory.													
	CO5	Understa	nderstand the Security issues, I/O management, Disk management and file system structure in operating systems.													
CO\PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		3	3	3	3	3	1	-	-	-	-	-	2	1	1	
CO2		3	3	2	3	2	1	-	-	-	-	-	2	2	1	
CO3		3	3	3	3	3	1	-	-	-	-	-	2	2	1	
CO4		3	3	2	3	2	1	-	-	-	-	-	2	2	1	
CO5		3	2	2	2	2	1	-	-	-	-	-	2	2	2	

					At	the end o	of course,	students	will be a	ble to:					Bloom' Taxonomy Knowledge Dimension
	CO1	Understand	principle	of Web p	oage desig	gn and abo	out types	of websit	es						K3, K4, F,C
Web Designing (KIT401)	CO2	Visualize aı	nd recogn	ize the ba	sic conce	pt of HTN	ML and a	pplication	in web d	esigning.					K1,K2 C,P
	CO3	Recognize a	gnize and apply the elements of Cascading Style Sheet (CSS). rstand the basic concept of Java Script and its application.												
	CO4	Understand													
	CO5	Introduce b	asics conc	ept of W	eb Hostin	g and app	oly the co	ncept of S	SEO						K2,K3 F, C
CO\PO Mappi	ing	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	3	2	1	1	1	-	-	-	1	1	2	1	1
CO2		3	3 1 3 1 2 1 1 1 2 1											1	
CO3		3	1	3	1	2	1	-	-	ı	1	1	2	2	1
CO4		2	1	3	3	3	1	-	-	-	1	1	3	2	2
CO5		1	3	1	2	2	2	-	-	-	1	2	2	2	2

					A	at the end	l of cours	se, studen	ıts will be	e able to:					Bloom's Taxonomy Knowledge Dimension
	CO1	Underst	and and v	vrite simp	ole Pythor	n program	ns								K2 C
	CO2	Develop	Python 1	programs	with cond	ditionals	and loops								K4,K5 C,P
Python Programming	CO3	Design	python functions and to use Python data structures — lists, tuples, dictionaries												
(KNC-402)												K4,K5 C,P			
	CO5	To appl	m input/output with files in Python and to apply OOPs concepts in python oly searching, sorting and merging in Python												
CO\PO Mapp	ing	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1		3	1	2	1	3	-	-	-	-	-	-	1	1	1
CO2		3	2	2	2	3	-	-	-	-	-	-	2	2	2
CO3		3	3	2	2	3	-	-	-	-	-	-	2	2	2
CO4		3	2	2	2	3	-	-	-	-	-	-	2	2	2
CO5		3	2	2	3	3	-	-	-	-	-	-	2	2	2

Practical

				At the e	nd of cou	rse, stud	ents will	be able t	0:						Bloom's Taxonomy Knowledge Dimension
	CO1	Implement	the basic	command	l of OS ar	nd will ex	ecute the	various s	ystem cal	ls.					K4/F,C
	CO2	Implement	the proces	ss synchro	onization	problem	using sen	aphore.							K4/P,M
Operating System	CO3	Implement	CPU sche	duling al	gorithm f	or proces	s schedul	ing and de	eadlock n	nanageme	ent techni	ques.			K3/P,M
Lab	Lab CO4 Implement memory management techniques.										K4/P,M				
(KCS451)	CO5	Implement	file storag	ge allocati	on techni	ques.									K4/P,M
СО\РО Марр	ing	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO 1	PSO2
CO1		3	3	3	3	3	2	-	-	-	1	-	3	1	1
CO2	CO2 3 3 2 3 2 2 1 3 2											1			
CO3		3	3	3	3	3	1	1	1	-	1	-	3	2	2
CO4		3	3	2	3	2	3	-	-	-	1	-	3	2	2
CO5													3		

					At th	ne end of	course, s	tudents v	vill be ab	le to:					Bloom's Taxonomy Knowledge Dimension
	CO1	Underst	and the p	rinciple o	f Web des	sign conc	epts.								K1, K2/F,C
WebDesigning	CO2	Implem	ent of HT	ML in the	e working	s of the v	veb applic	cations.							K3 P
Lab(KIT451)	CO3	Apply CSS for creating and designing the Web pages.													
	CO4	Apply a	Apply and build dynamic web pages using client-side programming JavaScript.												
	CO5	Analyze	and deve	eloping di	fferent ty	pes of we	eb pages u	sing HTN	ML, CSS	and JavaS	Script.				K3, K4 C,P
CO\PO Mapp	oing	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1		2 3 2 1 1 1 1 2 1											1		
CO2		3	1	3	1	2	1	ı	-	-	1	1	2	1	1
CO3	•	3	1	3	1	2	1	-	-	-	1	1	2	2	1
CO4		2	1	3	3	3	1	1	-	-	1	1	3	2	2
CO5		1	3	1	2	2	2	-	-	-	1	2	2	2	2

					At the	e end of o	course, st	udents w	ill be abl	e to:					Bloom's Taxonomy Knowledge Dimension
	CO1	Underst	and basic	syntax o	f python i	mplemen	tation								K2 C
	CO2	Practica	lly apply	looping a	and condi	tional cor	structs								K3 C,P
Python Decomposite	CO3	Develop	Develop programs related with list data structure. Design programs related to tuples, dictionary and set												
Programming Lab(KCS-453)	CO4	Design	programs	related to	tuples, d	lictionary	and set								K4 C
	CO5	Apply s	earching	sorting a	nd mergii	ng in Pytl	non								K3 C,P
CO\PO Mappir	ıg	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PSO2
CO1		3	1	2	1	3	-	-	-	-	-	-	1	1	1
CO2		3 2 2 3 2 2												2	
CO3		3 3 2 2 3 2 2												2	2
CO4		3	2	2	2	3	-	-	-	-	-	-	2	2	2
CO5	•	3	2	2	3	3	-	-	-	-	-	-	2	2	2

CO PO and Mapping of CO PO 3rdYear (2019-2023 BATCH)

Session:- 2021-22 Semester:-6th

S.No.	Subject	Code
1	Software Engineering	KCS601
2	Data Analytics	KIT601
3	Computer Networks	KCS603
4	Blockchain Architecture Design	KIT061
5	Real Time Systems	KOE061
6	Indian Tradition, Culture and Society	KNC602
7	SE Lab	KCS651
8	Data Analytics Lab	KIT651
9	Computer Networks Lab	KCS653

Theory

					Att	he end o	f course,	students	will be a	ble to:					Bloom's Taxonomy Knowledge Dimension	
	CO1	Explain	various s	software o	haracteri	stics and	analyze d	lifferent s	oftware I	Developm	ent Mode	els			K1,K2 C,M	
G &	CO2			contents of exce				ftware qu	ality assu	rance pra	actices to	ensure tha	at design,		K1,K2 F,C	
Software Engineering	CO3	Compar	Compare and contrast various methods for software design.													
(KCS601)	CO4	Formulate testing strategy for software systems, employ techniques such as unit testing. Test driven development as													K3 F,P	
	CO5			develop					s in teams	s and mal	ke use of	Various so	oftware		K5 C, M	
CO\PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	•	1	1	1	-	1	1	1	-	-	1	2	2	1	1	
CO2		2	3	3	2	2	1	1	-	-	2	3	3	2	2	
CO3		3	3	3	3	1	1	2	-	-	1	1	2	1	1	
CO4		3	3	3	3	2	2	2	-	-	1	2	2	2	2	
CO5		2	3	2	3	2	2	1	-	-	2	3	2	2	2	

				At	the end	of course	, student	s will be a	able to:						Bloom's Taxonomy Knowledge Dimension
	CO1	Discuss v	various co	oncepts of	data anal	ytics pipe	eline								K1,K2 C
	CO2	Apply cla	assificatio	on and reg	ression te	echniques	•								K3 C,P
Data	CO3 Explain and apply mining techniques on streaming data.														K2,K3 C, P
Analytics	ata ^														K4 M
(K11001)	CO5	Describe	the conce	ept of Pyt	hon progr	amming	and imple	ment ana	lytics on	Big data ı	using pyth	ion.			K2,K3 C,P
CO\PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	3	3	2					2	3	3	3
CO2		3	3	3	3	3	2					1	1	2	2
CO3		3	3	3	3	3	2					1	1	3	3
CO4		3	3	3	3	3	2					1	1	2	2
CO5	•	3	3	3	3	3	2					1	3	3	3

				At	the end	of course	e, student	ts will be	able to:						Bloom's Taxonomy Knowledge Dimension
	CO1	Understa	and the fu	ındamenta	al concep	ts of com	puter net	working a	and its lay	ered desi	gn archite	ecture.			K1,K2/F,C
	CO2	Apply th	ne link lay	er proper	ties to de	tect error	and to fi	nd the so	lutions fo	r error co	ntrol and	flow con	trol.		K2, K3/C,P
Computer Networks	ks Design the subject addresses to form the LAN and calculate distance among routers in subject.														K4, K5/ C,P
(KCS603)	works CS603) CO3 Design the subhet addresses to form the LAN and calculate distance among routers in subhet. CO4 Understand the duties of transport layer, session layer and presentation layer and also focus on network security issues to secure communication towards society.														
	CO5	Understa protocols				ons of var	rious appl	ication la	yer proto	cols such	as DNS,	HTTP, F	TP, e-ma	il	K1,K2/F,C
CO\PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	3	3	3	1	-	1	2	1	3	2	1
CO2		3	3	3	3	3	3	2	-	1	2	1	2	2	2
CO3		3	3	3	2	3	3	2	-	1	2	1	2	2	3
CO4		3	2	2	2	3	2	2	1	1	2	1	2	2	2
CO5		3	2	2	3	3	2	2	1	1	2	1	2	2	2

					At th	ne end of	course, s	tudents w	vill be ab	le to:					Bloom's Taxonomy Knowledge Dimension	
	CO1	Describe	e the basi	c understa	anding of	Blockcha	in archite	ecture alor	ng with it	s primitiv	/e.				K1,K2 C	
	CO2	Explain	the requi	rements for	or basic p	rotocol al	long with	scalabilit	y aspects						K2,K3 P	
Blockchain Architecture	CO3	Design a	and deplo	nd deploy the consensus process using frontend and backend												
Design (KIT061)	CO4	ApplyBlockchaintechniquesfordifferentusecaseslikeFinanceandTrade/Supply													K3,K4, K5 P,M	
	CO5	Apply E	Blockchair	n techniqu	ues for dif	fferent use	e cases lik	ke Finance	e and Tra	de/Suppl	y				K3, K4, K5 P,M	
CO\PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO 1	PSO2	
CO1		3				3	2	2	2				2			
CO2		3	2		2	3						2	1		2	
CO3		3	2	2	2	3	2						3	2	2	
CO4		3	3	3	3	3	3		2			2	3	2	3	
CO5		3	3	3	3	3	3	2				2	2	2	3	

					At	the end o	f course,	students	will be a	ıble to:					Bloom's Taxonomy Knowledge Dimension
	CO1	Describe	e concept	s of Real-	-Time sys	tems and	modeling	<u>.</u>							K1,K2 F,C
Real Time	CO2	Recogni	ize, and a	pply the c	characteri	stics of a	real-time	system ii	n context	with real	time sche	duling.			K2,K3 C, P
Systems (KOE061)	СОЗ	Classify	lassify and analyze various resource sharing mechanisms and their related protocols.												
(22020)	CO4	Interpret the basics of real time communication by the knowledge of real time models and protocols.													K3,K5 F, C
	CO5	Apply th	ne basics	of RTOS	in interp	retation of	f real time	e systems							K3,K5 C, P
CO\PO Mappi	ng	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	2	2	2	2			2	2	2	3	3	3
CO2		3	3	3	3	3	3			2	2		3	3	3
CO3		3	3	3	3	3	3	2		2	2	2	3	3	3
CO4		3	3	3	3	3	3	2	2	2	2		3	3	3
CO5		3	3	3	3	3	3	2	2	2	2		3	3	3

					At t	he end of	f course,	students	will be al	ble to:					Bloom's Taxonomy Knowledge Dimension
Indian	CO1	Identify a	and under	stand the	roots and	details o	f Society	State and	Polity in	India.					K1,K2 F,C
Tradition, Culture		Understa	nd the im	portance	of Indian	Literatur	e , Cultur	e , Traditi	on ,Pract	ices and t	o apply in	n the pres	ent systen	n.	K2,K3 F,M
and Society (KNC602)	CO3	Analyse l System I		nism, Six	K3,K4 C, M										
	CO4	System Indian Philosophy and to apply in the present system. Analyse the Science, Management, and Indian Knowledge System and to apply in the present system.													K3,K4 F, P,M
		Evaluate World an									n's Cultu	ral Contri	bution to	the	K5,K6 F, P,M
CO\PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			2	2	1	2	2	2	2	2	1		2	2	
CO2		2	1	2		2	2	2	2	2	1	2	3	1	1
CO3		1	1	2	-		2	2	2	1	2		2		1
CO4		2	2	2	-	-	2	2	2	2	2	2	2	1	2
CO5		2	1	2	2	2	3	2	2	2	2	1	2	1	2

Practical

					At th	ne end of	course, s	tudents	will be al	ole to:					Bloom's Taxonomy Knowledge Dimension
	CO1	Underst	and the f	undament	al concep	pts of com	nputer net	working,	network	topologic	es and net	work con	necting d	levices.	K1,K2/C,F
	CO2	Learnin	g about U	JTP cabli	ng and de	esign simp	ple comp	uter netw	ork LAN	•					K3,K4/F,C,P
Computer Networks Lab	CO3		ne basic n	etwork co	ary for		K3,K4, K5/C,P								
(KCS653)	CO4	Formula	ate proble		K4,K5,K6/F,C,										
	CO5			oid progredge and u		nputer ne	twork tec	hnology	can impa	ct on the	society an	d continu	ie to adva	nce	K3, K4/F,C
CO\PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
COI	-	3	2	2	2	2	3	3	2	3	3	3	2	2	1
CO2	2	3	2	3	2	2	2	3	2	2	2	3	3	2	1
CO3	3	3	2	3	2	3	2	2	2	2	2	2	3	2	1
CO ²		2	2	3	2	3	2	2	2	3	3	2	2	2	2
COS	5	3	2	2	2	2	3	2	2	3	2	2	2	2	3

					At th	e end of o	course, st	udents w	ill be abl	e to:					Bloom's Taxonomy Knowledge Dimension
	CO1		ambiguit -function			s and inco	ompletene	ss from a	requirem	ents spec	ification	and state	e function	ıal	K2,K4 C
	CO2		different es with dif	e	K3,K5 C,P										
Software Engineering	CO3	Draw a	aw a class diagram after identifying classes and association among them												
Lab (KCS651)	CO4		• •			_	s, and asso		_	em and id	entify th	e logical	sequence	2	K4,K5 C,P
	CO5	Able to	use mode	rn engine	ering too	ls for spe	cification,	design, i	mplemen	tation and	d testing				K3,K4 C,M
CO\PO Mappi	ing	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	2	3	2	2	-	1		1	3	1	1
CO2		3	3	3	3	3	2	2		1		1	3	1	1
CO3		3	3	3	3	3	2	2		1		1	2	1	1
CO4		3	3	3	3	3	2	2		1		1	1	2	2
CO5		3	3	3	3	3	2	2		1		1	2	3	3

					At t	he end o	f course,	students	will be al	ble to:					Bloom's Taxonomy Knowledge Dimension
	CO1	Impleme	ent nume	rical and	statistical	analysis	on variou	s data sou	rces.						K2,K4 F,P
	CO2	Apply d	ata prepre	ocessing a	and dimer	nsionality	reduction	n methods	on raw d	lata.					K3,K5 C,P
Data	CO3	Impleme	ent linear		K3,K4 C,P										
Analytics Lab(KIT	CO4	Execute	plement linear regression technique on numeric data for prediction. ecute clustering and association rule mining algorithms on different datasets												
651)	CO5	Impleme	ent and ev	valuate th	e perform	ance of k	KNN algo	rithm on o	different o	datasets.					K3, K4 P,M
CO\PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	3	3	2					2	3	3	3
CO2	-	3	3	3	3	3	2					1	1	2	2
CO3		3	3	3	3	3	2					1	1	3	3
CO4		3	3	3	3	3	2					1	1	2	2
CO5		3	3	3	3	3	2					1	3	3	3

CO PO and Mapping of CO PO 4thYear

(2018-2022BATCH)

Session:- 2021-22 Semester:-8th

S.No.	Subject	Code
1	Rural Development	KHU801
2	Cloud Computing	KOE081
3	Big Data	KOE097
4	Project	KIT851

Theory

Rural			At the end of course, students will be able to:													
	CO1	Understa	Inderstand the definitions, concepts and components of Rural Development													
Development (KHU-801)	CO2	Distingui	Distinguish among importance, structure, significance and resources of Indian rural economy													
	CO3	Apply lea	Apply learning of area development programs and see their impact.													
	CO4	Apply kn	Apply knowledge of rural entrepreneurship.													
	CO5	Evaluate different methods for human resource planning.														
CO \PO Mapping		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		1	1	1	1	1	2	2	3	2	1	2	1	1	1	
CO2		1	1	1	1	1	2	2	3	2	1	2	1	1	1	
CO3		1	1	1	1	1	2	2	3	3	1	2	1	1	1	
CO4		1	1	1	1	1	2	2	3	3	1	2	1	1	1	
CO5		1	1	1	1	1	2	2	3	3	1	3	1	1	1	

		At the end of course, students will be able to:												Bloom's Taxonomy Knowledge Dimension		
	CO1	Understa	Understand basic concepts and evolution of Cloud Computing.													
Cloud Computing	CO2	Understa	Inderstand the importance of different Cloud enabling technologies and apply their application in the real world.													
(KOE-081)	CO3	Understand and analyze multilayered cloud architecture design along with their applications and challenges.													K2,K4 C, P	
	CO4	Understand and Apply Resource management and analyze security systems in the cloud.												K3, K4 C, P,M		
	(1)5	Analyze and Evaluate the components of open stack, Google Cloud platform, Hadoop, Virtual Box and Amazon web Service.													K4, K5/C, P,M	
CO \PO Mapping		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		3	3	1	1	2	2	2	1	2	1	3	2	2	3	
CO2		3	3	3	2	2	2	1	2	1	2	2	3	2	2	
CO3		3	3	2	2	2	2	2	1	2	1	2	1	2	1	
CO4		3	3	2	2	3	3	2	1	1	2	1	2	1	2	
CO5		3	3	3	3	3	2	2	1	2	1	2	1	2	1	

		At the end of course, students will be able to:													Bloom's Taxonomy Knowledge Dimension	
	CO1	Underst	Understand the Big Data concept and related terminologies like security, characteristics, analytics, tools &techniques.													
Big Data(KOE	CO2	Underst	Understand Hadoop Ecosystem and apply Map Reduce programming on Hadoop framework.													
-097)	СОЗ	Underst	Understand and apply Hadoop setup with JAVA interfaces.													
	CO4		Understand and apply resource management, NoSQL database and OOP programming on Hadoop Ecosystem using YARN, MongoDB, Spark and SCALA.													
	CO5	Understand and apply data processing and monitoring using Pig , Hive and HBase on Hadoop Ecosystem.													K3,K4, K5 C, P, M	
CO \PO Mapping		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		3	3	3	3	3	1	-	1	2	-	2	3	3	3	
CO2		3	3	3	3	3	1	-	1	2	-	2	3	3	3	
CO3	CO3		3	3	3	3	1	-	1	2	-	2	3	3	3	
CO4		3	3	3	3	3	1	-	1	2	-	2	3	3	3	
CO5		3	3	3	3	3	1	-	1	2	-	2	3	3	3	

Practical

			At the end of course, students will be able to:												
	CO1	Select a	Select and summarize all aspects of the real-life problem through survey.												
Project (KIT851)	CO2	Apply a	Apply acquired knowledge to develop working model and plan different phases for its execution.												
	CO3	Analyz	Analyze outcome of each phase using various tools, techniques, and coding practices.												
	CO4	Justify/	Justify/defend opinions, validity of ideas or quality of work based on a set of criteria.												
	CO5	Test the	Test the working model and modify related phase accordingly. Finally integrate all phases												
CO \PO Mapping		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	3	3	2	1	1	3	3	3	3	3	3
CO2	CO2		3	3	3	2	2	1	1	3	2	3	3	3	3
CO3		3	3	3	3	2	2	1	1	3	2	3	3	3	3
CO4	CO4		3	3	3	2	2	1	1	3	2	2	3	3	3
CO5	CO5		3	3	3	2	2	1	1	3	2	1	2	3	3