

KIET Group of Institutions, Ghaziabad Department of Information Technology (NBA Accredited)

(An ISO – 9001: 2015 Certified & 'A+' Grade accredited Institution by NAAC)

Course Outcome

Session 2021-22
Odd Semester
Department of Information Technology

13KMSTONE,GHAZIABAD-MEERUTROAD,GHAZIABAD-201206

Website:www.kiet.edu

Index

		3 rd Semester
S No.	Subject Code	Subject Name
1	KAS-302	Maths IV
2	KVE-301	Universal Human Values
3	KCS-301	Data Structure
4	KCS-302	Computer Organization and Architecture
5	KCS-303	Discrete Structures & Theory of Logic
6	KNC-301	Computer System Security
7	KCS-351	Data Structures Using C Lab
8	KCS-352	Computer Organization Lab
9	KCS-353	Discrete Structure & Logic Lab
10	KCS-354	Mini Project or Internship Assessment

		5 th Semester
S No.	Subject Code	Subject Name
1	KCS 055	Machine Learning Techniques
2	KNC 501	Constitution of India, Law and Engineering
3	KCS 501	Database Management Systems
4	KCS 503	Design And Analysis Of Algorithm
5	KCS 054	Object Oriented System Design
6	KIT 501	Web Technologies
7	KCS 551	Database Management Systems Lab
8	KCS 553	Design and Analysis of Algorithm Lab
9	KIT 551	Web Technologies Lab
10	KCS 554	Mini Project or Internship Assessment

		7 th Semester
S No.	Subject Code	Subject Name
1	KCS 078	Deep Learning
2	KCS 071	Artificial Intelligence
3	KHU 702	Project Management & Entrepreneurship
4	KOE-076	Value Relationship & Ethical Human Conduct- For A Happy & Harmonious Society
5	KIT751	Artificial Intelligence Lab
6	KIT 752	Mini Project or Internship Assessment
7	KIT 753	Project

CO PO and Mapping of CO PO 2nd Year (2020 – 2024 BATCH)

Session 2021-22 Semester:- 3rd

		3 rd Semester
S No.	Subject Code	Subject Name
1	KAS-302	Maths IV
2	KVE-301	Universal Human Values
3	KCS-301	Data Structure
4	KCS-302	Computer Organization and Architecture
5	KCS-303	Discrete Structures & Theory of Logic
6	KNC-301	Computer System Security
7	KCS-351	Data Structures Using C Lab
8	KCS-352	Computer Organization Lab
9	KCS-353	Discrete Structure & Logic Lab
10	KCS-354	Mini Project or Internship Assessment

Theory

					At the end	d of course	, student	ts will b	e able to	1				s Taxono dgeDimen	• .		
	CO1		the applica fferential e		partial diffe	erential equ	ations a	nd apply	for solv	ing Lin	ear and n	on-linear	F	X1,K3/P			
	CO2	separatio			on of second evaluate th								ŀ	X1,K3/P			
Math-IV	CO3		er the conc r and non li		oments, ske gression.	wness, kur	tosis and	momen	t generati	ing functi	on and a	nalyze	ŀ	K1,K4/P			
	CO4				probability pability dist	elated to	K	K1,K3/C,P									
	CO5			d the statistical method of data samples , hypothesis testing and applying the study of control heir properties. K2,K3/C,P													
CO \ PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2		
CO1		3	2										2	1	2		
CO2		3	3	2									2	1	2		
CO3		3 3 2 3 2											2	2	2		
CO4		3	3 3 1 1 1								1	1	1				
CO5		3	3	2	3	3	2	2					2	2	3		

				At tl	he end of											
	CO1	Understand	d the esse	ntial con	nplementa	arily betw	een 'VA	LUES"	and 'SK	ILLS'.				K2/F, 4/P		
Universal Human CO2 Understand how to ensure sustained happiness and prosperity.							K5/C									
Universal Human Values	CO3	Apply und profession.		g of valu	es and hu	man reali	ty to dev	velop a l	nolistic pe	erspectiv	e towards	life, and		K4/P,5/C		
	CO4	Analyze ha nature.	tand how to ensure sustained happiness and prosperity. Linderstanding of values and human reality to develop a holistic perspective towards life, and ion. Example 1. The probability of the properties of the probability o													
	CO5	Analyze et	hical and	unethica	ıl practice	s to actua	herever th	ney work.		K6/C						
CO \ PO Mapp	ing	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		-	-	-	-	-	1	1	2	2	-	-	3	-	-	
CO2		-	-	-	-	-	2	2	3	3	-	_	3	-	-	
CO3											-	3	-	-		
CO4		-	-	-	-	-	2	3	2	3	-	-	- 3			
CO5		2 3 3 2					3	-	-							

				A	t the end	of course,	students	s will be a	able to:					'sTaxono dge Dime	
	CO1	Apply the	knowledg	ge of vario	ous data sti	ructures ar	nd its ope	rations.					K	3 C, P	
	CO2	Apply star	ndard algo	rithms fo	r searching	g and sorti	ng						K	K3 C, P	
Data Structure	CO3	Analyze e	fficiency	of differer	nt algorith	ms using t	ime and s	pace com	plexity				K	(4 C, P	
(KCS-301)	CO4	Explore th	ne concept	, applicati	ion and im			K	4 C, P						
	CO5	Implemen	t the suita	ble data s	tructure w	ith respect	world pro	oblem	K5,K	6 C, P, N	Л				
CO \ PO M	apping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1		2	2	2	2	1							2		
CO2		2	2	2	2	2							1		
CO3		3	3 2 2 1 1 1									1	2	1	
CO4		3	3	2	3					1		1	1	2	1
CO5		3 3 2 3 1									2	1	2	2	

				A	at the end	of course	, student	s will be	able to:					n,s Taxoı edge Din	
	CO1	Describe t	he basic o	rganizatio	on and ope	eration of t	the compo	onents of	a digital	comput	er system	•		K1,K2/C	
Computer	CO2	Illustrate v arithmetic			nd logical	operation	s on diffe	rent types	s of num	bers to o	lesign an			K4/P,M	
Organization and Architecture	CO3	Analyze tl techniques	•	nance issu	ies of the p	processor a	and classi	fy the con	ntrol uni	t implen	nentation			K4/C,M	
	CO4	Categorize techniques		rchical m	emory sys	nentation		K3, K4/P,M							
	CO5	Compare t among I/C			ta transfer rd I/O inte	of commu	nication	К	(2, K5/C,N	/C,M					
CO \ PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	2	1	1								1	1	
CO2		3	2	2	1								1	1	
CO3		3 2 2 1											1	2	1
CO4		2	2	2	1								1	1	1
CO5 3 2 2 1										1	1	1			

				At the	end of cou	ırse, studo	ents will	be able t	o:					n's Taxo edge Dir	
	CO1		c fundame		ogical No thematica									K3 C,P	
Discrete Structures	CO2	Apply v	arious str	ructures	and prope	erties of m	nodern al	lgebra.						K3 C,P	
& Theory of Logic	СОЗ	problem		ying adv	auch as rea									K3 C,P	
	CO4	Explore	plore various problems in the field of computer science using trees and graphs. K4 P,M termine a solution with the help of induction hypotheses, simple induction proofs and urrences.												
	CO5														
CO \ PO Ma	apping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	1	2	2	1	2	-	-	-	-	-	2	1	
CO2		2	2	1	1	2	1	-	-	-	-	-	2	1	
CO3	CO3 2 2 2 3 2 1									-	2	2	1		
CO4		3	3	3	3	3	3	-	-	-	-	-	3	2	3
CO5		2 1 2 2 3 2											2	3	3

				At	the end of	course, s	tudents v	vill be ab	ole to:				Bloom'sTaxonomy Knowledge Dimension			
	CO1		ver softwa such threa	_	hat pose c	yber secu	rity threat	s and to	explain l	how to f	ix the bu	gs to		K1,K2/,	С,Р	
	CO2		over cyber such threa		cenarios t	o web bro	owsers at	nd web s	servers a	and to e	xplain h	ow to		K2/C,	P	
Computer System Security CO3 To discov exploits, a To articul					posing o	cyber sec	urity thi	eats, ex	plain and	l recreate		K3/C,	P			
Security	CO4							tical com	puter sy	stems,	networks	, and		K4/C,	P	
	CO5			ate the urgent need for cyber security in critical computer systems, networks, and eweb, and to explain various threat scenarios te the well knowncyber attack incidents, explain the attack scenarios, and explain echniques. K4/C, P K5,K6/C, P												
CO\PO M	Iapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		3	1	3	2	2	2	2	3	3	2	1	3	2	1	
CO2		2 3 1 3 3 2 1 3 2 2									1	3	1	2		
CO3		2 2 3 2 3 2 1 3 1 3								1	3	2	3			
CO4		3	2	3	3	2	3	1	3	3	2	1	3	1	2	
CO5		3	2	2	3	3	1	2	3	3	2	1	3	3	1	

					At the en	d of cours	o studon	ste will b	o ablo to					s Taxonedge Din					
	CO1							its will b	e able to	· ·									
	COI	Imple	ment vario	ous Sortin	g and Sear	ching Alg	orithms.							K3/C I					
	CO2	Analy	ze the recu	arsive imp	plementati	on of diffe	erent sorti	ng and se	earching	algorith	ms.		K4/C P						
DSUC Lab (KCS-351)	СОЗ	Imple	ment vario	ous data S	tructure us	sing static	and dyna	mic mem	ory allo	cation.				K3,K4/C	C P				
	CO4		Demonstrate various operations like traversal, insertion, deletion on tree data structure.												K3/C P				
	CO5 Design and Implement practical applications based on graphs and shortest paths.												K5/C P						
CO \ PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2				
CO1		2	2	3	2					1	1		2						
CO2		2	2 2 3 2 1 1 1									2							
CO3		3	2	3	2					1	1		2	2					
CO4		3	3	3	2					1	1		2	2	2				
CO5		3	3	3	2					1	1		3	3	2				

				A	At the end				omsTaxo dedge Dir						
	CO1	Examine	the outpu	t of the ba	asic logic	gates for d	ifferent c	ombinatio	ons of in	put.				K3/P	
	CO2		nd simulat iplier) and		nbinationa nverter.	l circuits f	or binary	arithmet	ic (such	as adde	rs, subtra	ctors,]	K5/P, M	
CO Lab	CO3						ncoders/c	lecoders	and selec	ction dev	vices]	K5/P, M	
	CO4		ign and simulate combinational circuits for encoders/decoders and selection devices tiplexers/demultiplexers using logic gates. K5/P, M K5/P, M K5/P, M K5/P, M K5/P, M K5/P, M Roan and simulate the basic building block of the sequential circuits (i.e. SR and D Flip Flops) g logic gates. K5/P, M K5/P, M K5/P, M K5/P, M P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS01												
	CO5	Design an	logic gates. and simulate the 2-bit Arithmetic Logic Unit using logic gates. K5/P, M												
CO \ PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	2	2	1					1	1		-	-	-
CO2		3	3	3	2					1	1		1	-	-
CO3		2	2 3 3 2 1 1									1	1	1	
CO4		2	3	3	2			_		1	1		1	2	1
CO5		2	3	3	2					1	1		1	2	1

				A	At the end	of course	e, student	s will be	able to:					m'sTaxon edge Dim	
	CO1	Impleme	nt various	Set opera	ations.									,K3/P	
	CO2	Design a	nd demon	strate uni	versal logi	c gates.								K3/P	
DSTL Lab	CO3	Analyze	various lo	gical exp	ressions us	sing progr	amming.							K4/P	
	CO4	Impleme	nt various	program	ming prob	lems base	d on bina	y search.						K3/P,M	[
	CO5	Design a	nd Implen	nent pract	tical applic	cations bas	sed on gra	phs and s	shortest j	paths.				K3, K6/P,	M
CO \ PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO12	PSO1	PSO2
CO1		3	2	2	3	2	-	-	-	-	1	-	1	1	-
CO2		3	3	3	3	2	-	-	-	-	1	-	1	1	-
CO3		3	2	2	3	3	-	-	-	-	1	-	1	1	-
CO4		3	3	2	2	3	-	-	-	-	1	-	2	2	1
CO5		3	2	2	2	3	-	-	-	-	1	-	2	2	1

				At the e	end of cou	rse, stude	nts will b	e able to) :					'sTaxonon edge Dime	
	CO1		ze and und amming so		he real life	e problem	and apply	their kn	owledge	to get				K1,K2,K4	1
	CO2		ge in the cr ledge and o		~ .	_	_		• •		diverse te	echnical		K2,K3	
Mini Project	CO3		ne various oblem	tools and	technique	s, coding _l	practices	for devel	oping rea	al life so	lution to			K2,K4/M	
	CO4	Use the proble	ne various em.	tools and	technique	s, coding 1	practices	for devel	oping rea	al life so	lutions to	the		K2,K4	
	CO5	1	out the erro	ors in app	lication so	lutions an	d its impl	ementatio	ons					K5,K6/M	
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	2	2	2	2	2	3	1	2	3	3	3
CO2		3	3	3	2	3	3	2	2	3	3	2	3	3	3
CO3		3	3	3	3	3	3	2	2	3	-	-	3	3	3
CO4		3	3	2	2	3	3	2	2	3	3	-	3	1	1
CO5		3	3	2	2	3	3	2	2	3	-	-	2	2	2

KIET GROUP OF INSTITUTIONS, GHAZIABAD

Department of Information Technology

CO PO and Mapping of CO PO 3rd Year (2019 – 2023 BATCH)

Session 2021-22 Semester:- 5th

		5 th Semester
S No.	Subject Code	Subject Name
1	KCS 055	Machine Learning Techniques
2	KNC 501	Constitution of India, Law and Engineering
3	KCS 501	Database Management Systems
4	KCS 503	Design And Analysis Of Algorithm
5	KCS 054	Object Oriented System Design
6	KIT 501	Web Technologies
7	KCS 551	Database Management Systems Lab
8	KCS 553	Design and Analysis of Algorithm Lab
9	KIT 551	Web Technologies Lab
10	KCS 554	Mini Project or Internship Assessment

Theory

					At the e	nd of co	urse, stud	dents wil	l be able	to:				om'sTaxo wledge Dir	
	CO1	Unde	rstand th	ne need f	for mach	ine leari	ning for	various _I	oroblem	solving				K2 C,	P
Machine	CO2	Unde probl		wide va	riety of	learning	algorith	ms and h	now to so	olve con	nputing			K2,K3 0	C,P
Learning Techniques	CO3	_	gn appro world pro	-	achine l	earning a	algorithn	ns and a	oply the	algorith	ms to			K3,K5	P
	CO4		rstand th	ne neural	nets for	r solving	real tim	e proble	ms and o	evaluatir	ng the			K5,K6	P
	CO5	_		models l		-	rt on the	expecte	d accura	cy that c	can be			K4,K5	P
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	2	1	2	1	1					1	2	
CO2		2	3	2	2	3	2	1		1			2	2	1
CO3		3	3	3	3	3	2	1		1		1	2	3	2
CO4		3	3	3	3	3	2	1		1		1	2	3	2
CO5		3	3	3	3	3	2	1		1		1	2	3	2

					At the er	nd of cou	rse, stud	ents will	be able	to:				oom'sTax wledge D	konomy Dimension
	CO1	_	ire the k	nowledg	ge of dat	abase de	sign me	thodolog	gy for im	plement	ing real	life		K3 C,	Р
Database	CO2	Desig	gn an inf	ormatio	n model	expresse	ed in the	form of	ER diag	gram.				K6 C,P	, M
Management System	CO3	Appl	y real tin	ne probl	ems of s	tructure	d query l	anguage	to datal	oases.				K3 C,	P
	CO4	Analy	ze the re	dundancy	y problen	n in datab	ase table	s using n	ormaliza	tion.				K4 C,	P
	CO5		fy the bro				ngement i	ssues inc	eluding da	ata integr	ity, secur	ity		K4 C,	P
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	-	-	-	3	-	-	1	1	-	1	2		1
CO2		2	1	3	2	3	-	-	1	1	3	2	1	3	2
CO3		3	-	-	-	3	-	-	1	-	1	1	1	3	1
CO4		2	3	-	3	-	-	-	1	-	-	-	1	2	1
CO5		2	3	-	3	-	-	-	1	-	-	-	1	1	2

					At the e	nd of co	urse, stud	dents wil	l be able	to:				oom'sTaxon wledge Dim	
	CO1	Analy	ze runnii	ng time o	of algorith	ıms using	g asympto	otic metho	ods.					K4 C,P	
	CO2	Analy	ze advan	ced data	structure	algorith	ms to calc	culate the	ir comple	exities				K4 C,P	
Design and Analysis of Algorithm	CO3	Create		ns of Opti	imization	problem	as using D	Oynamic 1	Programr	ning and	Greedy			K6 P, M	
	CO4	Apply	/ backtrac	cking and	d branch	& bound	approach	es for fin	ding effi	cient solu	itions			K3 P	
	CO5		rstand the				ness and nms.	find alter	rnate solu	tions usi	ng			K2 C, P	
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	3	2	2	2							2	2	2
CO2		2	3	2	3	2							2	2	2
CO3		2	2	3	2	2		_	_	1			2	2	2
CO4		2	3	2	3	2				1			1	2	2
CO5		2	2	1	1	1				1			1	1	1

				F	At the en	d of cou	rse, stud	ents will	be able t	to:				m'sTaxonoi wledge Dim	
	CO 1		stand the							cept in co	omputing	to create	F	Κ2, Κ6 /U,C,	P
Web Technology	CO 2	Under	stand and	d create F	ITML, D	HTML, a	and XML	_ docume	nts for w	eb develo	opment]	K2, K6/U,C,	Р
reciniology	CO 3			d create w	veb based	l progran	ns using J	JavaScrip	t and crea	ate netwo	ork based	programs	F	K2, K6 /U,C,	Р
	CO 4	Under	stand and	d analyze	JDBC co	oncepts a	nd create	the busin	ness logic	using Ja	ıva Beans		K2	2, K4, K6/U,	C,P
	CO 5		rstand an web app					n server s	ide script	ting and	create wel	b based	K2	2, K3, K6/U,	C,P
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	3	3	1	1	1	1	1	1	3	3	3
CO2		3	3	3	3	3	1	1	1	1	1	1	3	3	3
CO3		3	3	3	3	3	1	1	1	1	1	1	3	3	3
CO4		3	3	3	3	3	1	1	1	1	1	1	3	3	3
CO5		3	3	3	3	3	1	1	1	1	1	1	3	3	3

					At the e	nd of cou	ırse, stud	dents wil	l be able	to:				oom'sTaxo owledge Dir	
	CO 1				ion devel	•	and analy	ze the ins	sights of	object ori	iented			K1,K2,K4	C,P
Object	CO 2	Unde	rstand, ar	nalyze an	d apply tl	ne role of	overall i	nodeling	concepts	(i.e. Sys	tem, struc	ctural).		K2,K3,K4	С,Р
Oriented System	CO 3	Learn	the struc	ctured ana	alysis / st	ructured	design ar	nd analyz	e the oop	s progran	nming sty	le.		K2,K4 C,P	
Design	CO 4	Apply	and eva	luate the	concepts	of C++ f	for the im	plementa	ation of o	bject orie	ented cond	cepts.		K3,K5 F,P	
	CO 5	Desig	n and eva	aluate the	e program	nming co	ncepts to	impleme	nt object	oriented	modeling	in C++.		K5,K6 P,M	
CO \ PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	2	2	3	3	2	-	2	2	1	2	2	2	2
CO2		3	3	2	3	3	3	-	2	3	2	3	2	2	2
CO3		3	2	2	2	3	3	-	2	2	2	2	2	2	2
CO4		3	3	3	3	3	3	-	2	3	2	3	1	2	2
CO5		3	3	3	3	3	3	-	2	3	2	3	1	1	1

					At the e	nd of cou	ırse, stuc	dents wil	l be able	to:				om'sTaxono wledge Dime	
	CO1	Discus	s the bas	sic featur	es and m	odalities	about the	Indian c	onstitutio	on.				K1, K2 F,C	
Constitution	CO2	Differe level	ntiate a	nd relate	the funct	ioning of	Indian p	arliamen	tary syste	m at the	center an	d state		K2,K3 F,C	
of India, Law and	CO3	Differe	ntiate d	ifferent a	spects of	the India	ın Legal S	System a	nd its rela	ated bodi	es.			K2,K3 F,C	
Engineering	CO4	Compa	re diffe	rent laws	and regu	lations re	elated to	engineeri	ng practi	ces.				K1,K2,K3, F,	С
	CO5	Articul	ate the 1	ole of en	gineers v	vith diffe	rent orga	nizations	and gove	ernance n	nodels			K2,K5 F,C	
CO \ PO Map	pping	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		-	-	-	-	-	1	1	-	-	-	-		-	-
CO2		-	-	-	-	-	1	1	-	-	-	-		-	-
CO3		-	-	-	-	-	2	2	1	-	-	-		-	-
CO4		2	-	-	-	-	1	2	1	-	1	-		-	-
CO5		1	-	-	-	-	2	1	2	2	1	2	1	-	-

				A	t the end	of cours	se, stude	nts will b	e able to	:				Bloom'sTa Knowledge	٠.
	CO 1	Unde		d apply N	⁄IYSQL _I	products f	for creati	ng tables,	, views, i	ndexes, s	equences	and other	r database	K1,K2,K	X3/ C, P
	CO 2	_		plement a				. •	base, ba	nking dat	ta base, li	brary info	ormation system,	K4,K5	5/C, P
DBMS Lab	CO 3	Desig	n and im	plement s	simple an	d comple	ex queries	s using D	DL, DM	L, DCL a	and TCL.			K4,K5	7/C, P
	CO 4	Imple	ement PL	/SQL blo	cks, proc	edure fur	nctions, p	ackages a	and trigge	ers, curso	ors.			K5/0	C, P
	CO 5	Demo	onstrate e	ntity inte	grity, refe	erential ir	ntegrity, l	key const	raints, an	d domair	n constrai	nts on dat	tabase.	K1,K3	6/C, P
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	2	3	2	2	2	1	1	2	1	2	2	2	2
CO2		3	3	2	2	3	1	2	1	2	2	3	3	2	2
CO3		3	2	2	2	2	2	1	1	2	1	2	2	2	2
CO4		2	2	3	2	2	2	2	1	2	2	3	2	1	1
CO5		3	3	2	2	3	1	1	1	2	1	2	3	1	1

					At	the end	of course	e, studen	ts will be	able to:				Bloom's Ta Knowledge	
	CO1	Implen	nent alg	orithm to	solve pr	oblems b	y iterativ	e approac	ch.					K3,K	4 C,P
	CO2	Implen	nent alg	orithm to	solve pr	oblems b	y divide	and conq	uer appro	ach				K3,K	4 C,P
DAA Lab	CO3	Implen	nent alg	orithm to	solve pr	oblems b	y Greedy	algorith	m approa	ch.				K6 I	P,M
	CO4	Implen approa	_	orithm to	solve pr	oblems b	y Dynam	nic progra	mming, l	oacktrack	ing, bran	ch and bo	ound	K2,K3	8 P, M
	CO5	Implen	nent alg	orithm to	solve pr	oblems b	y branch	and bour	nd approa	ch				K2,K	3 C,P
CO \ PO Maj	pping	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		1	3	2	2	1							3	1	1
CO2		2	3	2	3	2							2	1	2
CO3		3	2	2	1	2							2	1	2
CO4		2	2	2	1	2							2	2	2
CO5		2	2	2	2	1							2	2	2

					P	At the en	d of cour	se, stude	ents will	be able t	0:			Bloom'sT Knowledge I	
	CO1	Unders	stand and	create Ja	va progra	ams using	g method	s, librarie	es, Apple	and AW	T.			K2,K	
	CO2	Unders CSS, X		create w	eb based	program	s using H	TML, DI	HTML,					K2,K	6/C,P
WT Lab	CO3	Unders	stand and	Create Ja	avaScript	based dy	namic w	eb pages						K2,K	6/C,P
	CO4	Unders	stand and	Create ta	ables in J	ava Progi	rams usin	g JDBC	and prod	uce vario	us results	based on	SQL query.	K2,K	6/C,P
	CO5			create w					et & JSP	that can r	eceive da	ita sent fr	om client	K2,K	
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	2	3	1	1	1	1	1	1	3	3	3
CO2		3	3	3	3	3	1	1	1	1	1	1	3	3	3
CO3		3	3	3	3	3	1	1	1	1	1	1	3	3	3
CO4		3	3	3	3	3	1	1	1	1	1	1	3	3	3
CO5		3	3	3	3	3	1	1	1	1	1	1	3	3	3

					1	At the en	d of cou	rse, stud	ents will	be able t	0:			Bloom'sTaxonomy Knowledge Dimension							
	CO 1	Analyz	e and und	lerstand t	he real li	fe proble	m and ap	ply their	knowledg	ge to get	programn	ning solut	ion.	К3.	,C,P						
	CO 2			eative des t custome					and appli	ication of	f diverse t	echnical	knowledge and	K	4,P						
Mini Project	CO 3	Use the various tools and techniques, coding practices for developing real life solution to the problem												K6,M							
Troject	CO 4	Writing and presentation skill by using report about what they are doing in mini project												K5,M							
	CO 5	Find ou	t the erro	rs in appl	lication s	olutions a	and its in	nplementa	ations					K5	5,M						
CO\PO M	apping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2						
CO1		3	3	3	2	3	3	2	1	3	3	3	3	3	3						
CO2		3	3	3	2	3	3	2	1	3	3	3	3	3	3						
CO3		3	3	3	3	3	3	2	1	3	3	3	3	3	3						
CO4		3	3	2	2	3	3	2	1	3	3	3	3	3 3							
CO5		3	3	2	2	3	3	2	1	3	3	3	3	3 3 3							

KIET GROUP OF INSTITUTIONS, GHAZIABAD

Department of Information Technology

CO PO and Mapping of CO PO 4th Year (2018 – 2022 BATCH)

Session 2021-22 Semester:- 7th

		7 th Semester
S No.	Subject Code	Subject Name
1	KCS 078	Deep Learning
2	KCS 071	Artificial Intelligence
3	KHU 702	Project Management & Entrepreneurship
4	KOE-076	Value Relationship & Ethical Human Conduct- For A Happy & Harmonious Society
5	KIT 751	Artificial Intelligence Lab
6	KIT 752	Mini Project or Internship Assessment
7	KIT 753	Project

Theory

				A	at the en		rse, stud	lents wil	l be able	e to:				m's Taxono ledge Dime		
	CO1 Discuss mathematics behind functioning of Artificial neural network															
	CO2	Illustra	te differe	ent algor	ithms of	deep lea	rning for	classific	cation pr	oblem.				K4 P		
Deep Learning	CO3	Analys	e differe	nt dimen	sionality	reduction	on techni	ques for	real wor	ld datase	et			K4 P		
	CO4	Evalua	te differe	ent deep	learning	models	for optim	nised solu	ıtion of 1	eal worl	d probler	ns		K5 P		
	CO5	To des	ign deep	learning	solution	for com	ıplex real	l world p	roblem ı	ısing ten	sorflow		K6 P, M			
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		3	3	2	1	3	1	-	-	-	-		2	2	1	
CO2		3	3	2	2	3	1	-	-	-	-	1	2	2	2	
CO3		3	3	3	2	3	1	1	-	1	-	1	2	2	2	
CO4		3	3	3	3	3	1	1	-	1	-	2	2	3	3	
CO5		3	3	3	3	3	1	-	-	2	-	3	3	3	3	

				A	at the en	d of cou	rse, stud	lents wil	l be able	e to:				oom's Taxo owledge Din	
	CO1	Unders	stand the	concept	of artific	cial intell	igence a	nd intelli	igent age	ents.				K1,K2 C	:
	CO2	Apply	Apply basic principles of AI in solutions that require problem solving methods. K3 C											K3 C, P	
Artificial Intelligence	CO3	Determine the effectiveness of truths by knowledge representation methods in AI. K5 C, P													
	CO4	Abstrac	ract intelligent agents by exploring the architecture and communication of agents. K5 C, P, M												
	CO5		yze various AI applications in Information retrieval and extraction, Natural Language essing, speech recognition and Robots. K6 C, P, M												М
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3					3	2	2				3	2	2
CO2		3	3	2	2	3				2			3	3	2
CO3		3	3 3 2 3 3 2										3	3	3
CO4	3 2 3 3 2 2 2							3	3	3					
CO5		3 3 2 3 3 2 2									3	3	3		

				At the e	nd of co	urse, stu	idents w	ill be ab	le to:					om's Taxono wledge Dime						
	CO1	Unders	tand the	theories	of entrep	oreneursl	nip and H	Entreprer	neurial D	evelopm	nent Progr	rammes		K2 C						
Project Co2 Create innovative business ideas and market opportunities												tive business ideas and market opportunities K5 C, P, M								
Management &	CO3	Unders	tand the	importai	nce of Pr	oject Ma	ınagemei	nt and Pr	oject's li	ife cycle			K2 C, P							
Entrepreneurship	CO4	Analyz	e Project	t Finance	and pro		K4 C, P													
	CO5	Analyz	e Social	Sector P	erspectiv	K2 C, P														
CO \ PO Mapp	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2					
CO1		1	1	1	1	-	1	1	2	2	1	3	1	1	1					
CO2		1	1	1	1	1	2	2	3	3	1	3	2	1	-					
CO3		1	1 1 1 - 3 3 2 3 1 3										2	1	-					
CO4	CO4 1 1 1 1 1 2 3 2 3 1 3 3									3	2	1	-							
CO5	CO5 1 1 1 1 1 2 3 3 2 1 3										3	3	1	-						

				At the	end of o	course, s			om's Taxono ledge Dime							
	CO1		stand val ny at indi							fillment	by learnir	ng		K2 / C,P		
Value Relationship &	CO2		guish bety achieve				lividual 1	level whi	ich is coe	existence	of self a	nd		K4/ C,P		
Conduct- For A Happy & Harmonious CO3 Happy & Harmonious Harmonious CO3 Happy & Harmonious CO3 Happy & Harmonious Happy & Harmonious CO3 Happy & Harmonious Happy & Harmonious CO3 Happy & Harmonious Happy Harmonius relationships based on trust, respect, and other naturally acceptance in the first particular forms of the f													K3/ C,P			
Society (KOE-076)	CO4	Apply 1	nutually	fulfilling	g particip			K3/ C,P								
	CO5	Evalua work/li	te the eth	nical prac	ctices to		K5//C,P									
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		1	1	1	1	1	2	2	3	2	1	2	1	1	1	
CO2		1	1	1	1	1	2	2	3	2	1	2	1	1	1	
CO3		1	1 1 1 1 2 2 3 3 1 2											1	1	
CO4	CO4 1 1 1 1 1 2 2 3 3 1 2									2	1	1	1			
CO5 1 1 1 1 1 1 2 2 3 3 1 1 3										3	1	1	1			

Practical

				A	t the end		se, stud		be able	to:			Bloom's T Knowledg							
	CO1			tures of I			mming la	anguage,	includin	g basic s	yntax, se	election,		K3 C, P						
AI Lab	CO2		Demonstrate syntax, semantics, and natural deduction proof system of propositional and predicate logic											K3 C, P						
AI Lab	CO3	Demon	Demonstrate the recursion and sequences using PROLOG programming.											K3 C, P						
	CO4	Demor probler		e PROLO	OG prog	ramming	languag	e skills l	oy imple	menting	various r	eal-life		K3 C, P K3 C, P K4 C, P PO12 PS01 PS02 2 3 3 2 3 3						
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2					
CO1		3	3	2	2	3	-	-	-	-	1	2	2	3	3					
CO2		3	3	2	2	3	-	-	-	-	1	2	2	3	3					
CO3		3 3 3 2 3 2									2	3	3							
CO4		3 3 3 2 3 2 2								2	3	3								

				At the	end of co	ourse, stud	lents will	be able	to:					n'sTaxon vledge Dir	
	CO 1	Analyze solution.	and under	stand the	real life p	roblem and	d apply th	neir know	ledge to	get prog	gramming	Ţ,		K3,C,P	
	CO 2	~ ~		_	•	through thomer needs	_			on of div	erse tech	nical		K4,P	
Mini Project	CO 3	Use the v	se the various tools and techniques, coding practices for developing real life solution to the roblem											K6,M	
	CO 4	Writing a	and presen	tation ski		K5,M									
	CO 5	Find out	the errors	in applica		K5,M									
CO \ PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	2	3	3	2	1	3	3	3	3	3	3
CO2		3	3	3	2	3	3	2	1	3	3	3	3	3	3
CO3		3	3	3	3	3	3	2	1	3	3	3	3	3	3
CO4		3	3	2	2	3	3	2	1	3	3	3	3	3	3
CO5		3 3 2 2 3 3 2 1 3 3										3	3	3	3

				At t	he end o	f course	e, studen	ts will b	e able to):			Bloom's	Γaxonomy K Dimension	Knowledge				
	CO1	Select	and sum	marize a	all aspect	s of the	real life _l	problem	through	survey.				K1,K2/C, P					
	CO2	Apply executi	•	l knowle	dge to de	velop w	orking m	nodel and	l plan dit	fferent pl	hases for	its		K3/ C, P					
Project (KIT-753)	CO3	Analyze outcome of each phase using various tools, techniques, and coding practices.											K4/ C,P						
	CO4	Justfy/	ustfy/defend opinions, validity of ideas or quality of work based on a set of criteria.											K5/ C, P					
	CO5	Test th	e workir	ng model	K6/ C, P														
CO \ PO Mapp	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2				
CO1		3	3	3	3	3	2	1	1	3	3	3	3	3	3				
CO2		3	3	3	3	2	2	1	1	3	2	3	3	3	3				
CO3		3	3 3 3 2 2 1 1 3 2 3									3	3	3	3				
CO4		3 3 3 2 2 1 1 3 2 2								3	3	3							
CO5		3 3 3 2 2 1 1 3 2 1								2	3	3							