Course Outcome

Session 2019-20
Department of Information
Technology

Index

		3 rd Semester
S No.	Subject Code	Subject Name
1	KAS-302	Mathametics IV
2	KAS-301	Technical Communication
3	KCS-301	Data Structure
4	KCS-302	Computer Organization and Architecture
5	KCS-303	Discrete Structures & Theory of Logic
6	KNC-301	Computer System Security
7	KCS-351	Data Structures Using C Lab
8	KCS-352	Computer Organization Lab
9	KCS-353	Discrete Structure & Logic Lab

		5 th Semester
S No.	Subject Code	Subject Name
1	RAS 502	Industrial Sociology
2	RCS 501	Database Management Systems
3	RCS 502	Design And Analysis Of Algorithm
4	RIT 053	Object Oriented Techniques
5	RCS 503	Principle of Programming Language
6	RCS 551	Database Management Systems Lab
7	RCS 552	Design and Analysis of Algorithm Lab
8	RCS 553	Principle of Programming Language Lab

KIET GROUP OF INSTITUTIONS, GHAZIABAD Department of Information Technology

		7 th Semester
S No.	Subject Code	Subject Name
1	RCS-071	Application of Soft Computing
2	RCS-075	Cloud Computing
3	RIT-701	Cryptography & Network Security
4	RCS-702	Artificial Intelligence
5	ROE-074	Understanding the human being Comprehensively Human Aspiration audits fulfillment
6	RIT-751	Cryptography & Network Security Lab
7	RCS-752	Artificial Intelligence Lab

CO PO and Mapping of CO PO 2nd Year

(2018-2022 BATCH)

Session:- 2019-20 Semester:- 3rd Theory

Mathematics -IV (KAS 302)			ber the		t of par	tial diffe	erential	equatio	on and to	o solve	partial			
		-	e the co th parti	-	•		-	uations	to eval	uate the	probler	ns		
	CO3: Understand the concept of correlation, moments, skewness and kurtosis and curve fitting.													
	CO4: Remember the concept of probability to evaluate probability distributions													
		CO5: Apply the concept of hypothesis testing and statistical quality control to create control charts.												
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO	PO	PO	PO1	PO1	PO1		
Tr 8							7	8	9	0	1	2		
CO1	3	3	2	3	2	3	2	-	-	-	-	-		
CO2	3	3	3	3	2	3	1	ı	ı	-	1	3		
CO3	3	3	2	2	3	3	1	1	ı	-	1	3		
CO4	3	3	3	2	3	3	2	-	-	_	2	3		
CO5	3	3	3	3	3	3	1	-	-	-	1	3		

TECHNICAL	CO1:	Student	s will b	e enabl	ed to ur	derstan	d the na	ature an	d objec	tive of 7	Technic:	al		
COMMUNICATION	Comn	nunicati	on rele	vant for	the wo	rk place	as Eng	ineers.						
(KAS-301)	CO2:	Student	s will u	tilize th	e techn	ical wri	ting for	the pur	poses o	f Techn	ical			
	Comn	nunicati	on and	its expo	sure in	various	dimen	sions.						
	CO3:	CO3: Students would imbibe inputs by presentation skills to enhance confidence in												
	face o	face of diverse audience												
	CO4:	CO4: Technical communication skills will create a vast know-how of the application												
	of the	of the learning to promote their technical competence.												
	CO5:	CO5: Technical communication skills will create a vast know-how of the application												
	of the	of the learning to promote their technical competence.												
							PO	PO	PO	PO1	PO1	PO1		
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	7	8	9	0	1	2		
CO1	1	1	1	3	3	2	2	1	2	1	2	3		
CO2	2	1	2	1	2	3	1	1	2	2	3	2		
CO3	1	1	1	2	2	3	3	1	1	3	2	3		
CO4	2	2	1	2	3	3	2	1	2	2	3	3		
CO5	1	1	1	2	3	3	1	1	1	2	1	3		

	CO1:	Unders	tand the	basic c	oncept	s of algo	orithms	and ope	erations	to be p	erforme	d on		
Data Structures (KCS	data s	tructure	S											
301)	CO2:	To be a	ble to u	se basic	data st	ructure	s such a	s stacks	s and qu	ieues.				
	CO3:	CO3: To be able to implement various searching and sorting algorithms.												
	CO4:	CO4: To be able to evaluate graph traversal and find shortest paths.												
	CO5:	To be a	ble to a	pply fu	ndamen	tal algo	rithmic	problei	ns inclu	iding tre	ee travei	rsal.		
							PO	PO	PO	PO1	PO1	PO1		
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	7	8	9	0	1	2		
CO1	3	3	2	2	2	2	1	1	1	2	2	1		

CO2	2	3	2	1	2	1	1	2	2	2	1	2
CO3	3	3	3	2	3	2	2	2	3	2	1	2
CO4	3	3	3	2	2	2	2	3	3	2	3	2
CO5	3	3	3	2	3	2	2	3	3	1	2	2

	CO1:	Study of	f the ba	sic struct	ure and o	peration	n of a di	gital cor	nputer s	ystem.					
Computer Organization		CO2: Analysis of the design of arithmetic & logic unit and understanding of the fixed point and floating point arithmetic operations.													
and	CO3:	CO3: Implementation of control unit techniques and the concept of Pipelining													
Architecture (KCS 302)	CO4:	CO4: Understanding the hierarchical memory system, cache memories and virtual memory													
(KCS 302)		CO5: Understanding the different ways of communicating with I/O devices and standard I/O interfaces													
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	2	1	2	1	1	1	1	1	1	3			
CO2	3	3	3	1	3	1	1	1	1	1	1	3			
CO3	2	2	2	1	3	1	1	1	1	1	1	3			
CO4	2	2	2	1	1	1	1	1	1	1	1	3			
CO5	2	2	2	1	1	1	1	1	1	1	1	3			

			_	ogical no					undamei	ntal math	ematical			
D: 4	CO2:	Discuss	various	structur	es and pr	operties	of mod	ern alge	bra.					
Discrete Structure and Theory of Logic (KCS-303	life prand r CO4:	CO3: Employ their logical ability such as reasoning able to setup mathematical model of real ife problem by applying advanced counting and computing techniques like generating function and recurrence relation. CO4: Demonstrate problems in different areas of computer science using trees and graphs. CO5: Design solution with the help of induction hypotheses, simple induction proofs and recurrences.												
CO\PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	1	1	2	1	3	1	1	2	1	2	2		
CO2	3	2	1	1	2	1	2	1	2	2	1	2		
CO3	2	1	3	3	3	2	1	1	1	3	1	1		
CO4	3	1	3	1	2	2	2	1	1	2	1	1		
CO5	3	1	3	3	2	2	1	1	1	3	2	2		

		To disco			gs that p	ose cybe	er securi	ty threat	s and to	explain l	now to fix	x the	
Commutor		To disco	-	er attack	scenario	os to we	b browse	ers and v	web serv	ers and t	o explain	how to	
Computer System Security (KNC-301)		CO3: To discover and explain mobile software bugs posing cyber security threats, explain an recreate exploits, and to explain mitigation techniques. CO4: To articulate the urgent need for cyber security in critical computer systems, networks,											
(KNC-301)									comput	er systen	ns, netwo	orks,	
				and to ex					oin tha a	## a a l =	monico or	a d	
		in mitiga			own cyb	er attaci	c incider	its, expi	ain the a	ittack sce	narios, aı	na	
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3 3 2 3 3 3 3 3 3 3											
CO2	3	3	3	2	3	3	3	3	3	3	3	3	

CO3	3	3	3	2	3	3	3	3	3	3	3	3
CO4	3	3	2	2	3	3	3	3	3	3	3	3
CO5	3	3	2	2	3	3	3	3	2	3	3	3

Practical

Data Structures	CO1:	: Implem	entatio	ns of vai	rious ope	rations	of array	and Lin	ked List					
Using C Lab	CO2	CO2: Design solutions for various problems of stacks and queues.												
(KCS 351)	CO3	O3: Implementation of searching and sorting algorithms												
	CO4	O4: Implementation of practical applications based on graph and shortest paths.												
	CO5	: Implem	entatio	n of prog	ramming	proble	ms on tre	ee trave	rsal.					
CO \ PO														
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	2	2	2	1	1	1	2	2	1		
CO2	2	3	2	1	2	1	1	2	2	2	1	2		
CO3	3	3	3	2	3	2	2	2	3	2	1	2		
CO4	3	3	3	2	2	2	2	3	3	2	3	2		
CO5	3	3	3	2	3	2	2	3	3	1	2	2		

Computer	CO1	: Implem	ent the	basic los	gic gates.										
Organization				•			uch as ac	ders, c	ode conv	erter, mu	ltiplier,				
Lab	decod	der and n	nultiple	xer using	logic ga	tes									
(KCS 352)	CO3	: Implem	ent the	basic bu	ilding blo	ock of the	he seque	ntial cir	cuits (i.e	. Flip Flo	p).				
	CO4	CO4: Design the 8-bit Arithmetic Logic Unit.													
	CO5	CO5: Design of data path and control unit of the computer using register transfer language													
	descr	description.													
CO \ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	2	1	3	2	1	1	1	1	1	3			
CO2	3	2	3	1	3	2	1	1	1	1	1	3			
CO3	2	2 2 1 1 3 1 1 1 1 1 3													
CO4	2														
C05	1	1	1	1	2	1	1	1	1	1	1	3			

Discrete	CO1	: Implem	entatio	n of vario	ous Set o	peration	18.								
Structure and	CO2	: Implem	entatio	n of vario	ous basic	Mappl	e comma	nds.							
Logic Lab (KCS-353)		: Implemole script.		n of Indu	action, R	ecursiv	e Techni	ques an	d expect	ed value	problem	using			
		CO4: Implementation of practical applications based on graph and shortest paths.													
	CO5	CO5: Implementation of programming problems on binary search.													
CO \ PO	PO1														
CO1	3	1	1	2	1	3	1	1	2	1	2	2			
CO2	3	2	1	1	2	1	2	1	2	2	1	2			
CO3	2	1 3 3 3 2 1 1 2 1 1													
CO4	3	1	3	1	2	2	2	1	1	2	1	1			
CO5	3	1	3	3	2	2	1	1	1	2	2	2			

CO PO and Mapping of CO PO 3rd Year

(2017-2021 BATCH)

Session:- 2019-20 Semester:- 5th

Theory

		•	vide sti structu		with an	overvi	ew of i	ndustria	al socio	logy and	various th	eories of		
	CO2:	To gai		sight in	to deve	lopmer	it and c	onsequ	ences c	of industr	ialisation a	long with		
Sociology	CO3:	To get	the stu	dents a	cquaint	ed with	basic i	industri	ial polic	cies in In	dia and ho	w Science		
(RAS502)	& tec	hnolog	y is sha	ping ou	it the b	usiness	world.							
	CO4:	To hav	e a bas	ic unde	rstandi	ng of c	ontemp	orary i	ssues ir	industri	es like grie	evance,		
	indust	trial dis	putes,	collecti	ve barg	aining	etc. wit	th their	resolu	tion				
	CO5:	CO5: To enable student in visualising future in industry with reference to Cultural issues,												
	consu	consumer society and sociological concerns.												
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	1	3	1	2	2	1	2	1	2	1		
CO2	1	2	1	2	1	2	2	1	1	1	2	2		
CO3	1	2	1	2	1	2	2	2	1	1	3	1		
CO4	1	1	1	2	1	3	3	1	3	1	1	2		
CO5	1	2	1	3	1	3	3	2	1	1	1	1		

		CO1: Understand the database management system and implement conceptual model using entity relationship diagram. CO2: Apply query processing techniques to automate the real time problems of databases.												
Database	CO2:	Apply	query p	process	ing tecl	nniques	to auto	omate t	he real	time prol	blems of da	atabases.		
Management	CO3:	Identif	y and s	olve th	e redun	dancy 1	problen	n in dat	abase t	ables usi	ng normali	zation.		
System (RCS 501)	CO4:	Under	stand th	e conce	epts of	transac	tions aı	nd also	unders	tand the	need of dis	tributed		
System (Res 201)		latabases. CO5: Understand the concept of concurrency control and finally apply the knowledge to develop a small Database system.												
	CO5:													
	devel													
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	2	1	1	2	2	2	3	2		
CO2	3	3	3	3	2	1	1	1	2	2	3	2		
CO3	3	3 3 3 2 1 1 1 2 2 2 2												
CO4	3	2	3	3	2	2	2	1	3	2	2	2		
CO5	2	2	3	3	2	2	2	2	2	2	2	2		

	CO1: Argue the correctness of algorithms using inductive proofs and invariants. Analyze
	worst-case running times of algorithms using asymptotic analysis.
	CO2: Describe the divide-and-conquer paradigm and explain when an algorithmic design
Design Analysis &	situation calls for it. Recite algorithms that employ this paradigm. Synthesize divide-and-
Algorithm (RCS-	conquer algorithms. Derive and solve recurrences describing the performance of divide-and-
502)	conquer algorithms
	CO3: Describe the dynamic-programming and greedy paradigm and explain when an
	algorithmic design situation calls for it
	CO4: Explain the major graph algorithms and their analyses. Employ graphs to model

	engin	eering	problen	ns, whe	n appro	priate.									
		-	n what analysi	-	titive aı	nalysis	is and t	o whic	h situat	ions it ap	plies. Perf	orm			
CO \ PO Mapping	PO1														
CO1	3	1	1	2	2	1	1	1	1	1	1	2			
CO2	3	1	2	2	2	1	1	1	1	1	1	2			
CO3	3	1	3	3	1	1	1	1	1	1	1	2			
CO4	3	2	3	1	1	1	1	1	1	1	1	2			
CO5	3	3	3	1	1	1	1	1	1	1	1	2			

			stand th		cation	develop	ment a	nd ana	lyze the	insights	of program	nming to		
Object Oriented			stand, a	nalyze	and ap	ply the	role of	overall	model	ling cond	epts (i.e. S	ystem,		
Techniques (RIT-	struct	ural)												
E13)	CO3:	O3: Understand, analyze and apply oops concepts (i.e. abstraction, inheritance).												
	CO4:	04: Understand the concepts of C++												
	CO5:	O5: Understand the methods, class and objects concepts in C++												
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	1	1	1	1	1	2	1	1	1	3		
CO2	3	2	3	1	1	1	1	1	1	1	1	1		
CO3	3	1	2	1	1	1	1	1	2	1	1	1		
CO4	3	1	2	1	2	1	1	1	2	1	1	1		
CO5	3	1	1	1	2	1	1	1	2	1	1	2		

Principles of Programming Langauges (RCS- 503)	hardw CO2: CO3: the tra CO4: and la CO5:	Understaditional Use the Inguage	ncepts a stand th stand th al progr e know	and use the basic the languarmin the ledge to apply the	of gran principage de g langu o solve	nmers oles bel scriptic lage real lif	for development of the problem of th	elopme e progra guage p ems wi	nt of la amming ropertion	nguages. g languages and ab	ge development to correspond to corresponding probabilism of the c	nent . late with varadigm	
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	1	1	1	1	1	1	1	1	2	
CO2	3	3	3	2	1	1	1	1	1	1	1	3	
CO3	3	3 2 2 1 1 1 1 1 3											
CO4	2	3 2 2 1 1 1 1 1 3											
CO5	3	3	3	3	1	1	3	3	2	2	2	3	

Practical

Databasa	CO1:	Use th	e case t	ools fo	r creati	on of E	R Diag	ram.						
Database	CO2:	Create	and mo	odify th	e datab	ase and	d apply	differe	nt cons	traints us	sing DDL	commands.		
Management	CO3:	Use of	DML o	comma	nds									
System Lab (RCS 551)	CO4:	CO4: Display data from multiple tables using joins and apply different functions of SQL.												
331)	CO5:	O5: Implement cursor, trigger, procedures and functions using PL/SQL.												
CO \ PO Mapping	PO1													
CO1	3	3	2	2	3	1	2	1	2	2	3	3		
CO2	3	3	2	2	3	1	1	1	2	1	2	3		
CO3	3	2	2	2	2	2	1	1	2	1	2	2		
CO4	2	2 3 2 2 1 1 2 1 2												
CO5	2	2	3	2	2	2	2	1	2	2	3	2		

Design and Analysis of	1	_		lgorithi y dema		ve then	n correc	et, and a	analyze	their asy	mptotic ar	nd absolute		
Algorithm Lab (RCS-552)	CO2:	Find a	n algori		solve t	he prob	lem (cı	eate) a	nd prov	e that the	e algorithn	n solves the		
(RC3-332)	CO3:	Unders	stand th	e math	ematic				_		gorithm is fficient alg			
	CO5:	CO4: Apply classical sorting, searching, optimization and graph algorithms. CO5: Understand basic techniques for designing algorithms, including the techniques of recursion, divide-and-conquer, and greedy.												
	recurs	sion, di	vide-an	d-conq	uer, an	d greed	y.							
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	1	2	1	1	1	1	1	1	1	2		
CO2	3	3	2	2	2	1	1	1	1	1	1	2		
CO3	3	3 3 3 1 1 1 1 1 1 2												
CO4	3	3 2 3 1 1 1 1 1 1 1 1												
CO5	3	3	3	1	1	1	1	1	1	1	1	2		

Principles of Programming Langauges Lab (RCS-553)	CO2: CO3: CO4:	CO1: Able to understand various concepts of programming paradigm. CO2: Study functional programming paradigm using SML CO3: Able to implement basic arithmetic operations in SML CO4: Able to implement basic list operations in SML CO5: Able to comprehend and implement logic programming examples.												
CO \ PO Mapping	PO1													
CO1	3	2	2	1	1	1	1	1	1	1	1	3		
CO2	3	3	2	1	1	1	1	1	1	1	1	3		
CO3	3	3 2 2 1 1 1 1 1 1 1 3												
CO4	3	3 2 1 1 1 1 1 1 1 3												
CO5	3	3	3	3	1	1	1	1	2	2	2	3		

CO PO and Mapping of CO PO 4th Year

(2016-2020 BATCH)

Session:- 2019-20 Semester:- 7th

Theory

	CO1: Recognize the feasibility of applying a soft computing methodology for a particular problem.												
Application of			concepts nplement										
Soft Computing (RCS-071)			ral netwo					_	-	oroblems	and con	npare	
	CO4: A	CO4: Apply fuzzy logic and reasoning to handle uncertainty and solve engineering problems. CO5: Apply genetic algorithms to combinatorial optimization problems.											
	CO5: A												
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	2	3	3	2	1	1	1	1	3	
CO2	3	3	3	3	3	3	2	1	1	1	1	3	
CO3	3	3 3 3 3 3 1 1 1 1 3											
CO4	3	3	3	3	3	3	2	1	1	1	1	3	
CO5	3	3	3	3	3	3	2	1	1	1	1	3	

	CO1: L		ic concep	ots of C	CloudCo	omputii	ng in ac	ldition	parallel a	ınd distril	outed		
Cloud Computing (RCS-075)	CO2: Understand the importance of different Cloud enabling technologies												
	CO3: Understand layered cloud architecture design and challenges.												
(RCS-075)	CO4: Learn basic concepts of resource management and security in cloud.												
	CO5: A	CO5: Analyze components openstack, GoogleCloud platform, Hadoop, Virtual Box and											
	Amazo	Amazon web Service											
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	2	2	2	3	3	3	3	3	3	
CO2	3	3	3	2	2	2	3	3	3	3	3	3	
CO3	3	3	3	2	2	2	3	3	3	3	3	3	
CO4	3	3	2	2	2	2	3	3	3	3	3	3	
CO5	3	3	3	2	2	2	3	3	3	3	3	3	

Cryptography &		earn the (S) and pr						ncrypti	on/decry	ption, see	curity att	acks
	CO2: Learn the introduction to number theory used in Cryptography.											
Network Security	CO3: L	CO3: Learn the concepts of MAC, hash function and digital signature.										
(RIT-701)	CO4: L	earn the	concept of	of key 1	nanage	ment, d	listribu	tion and	l its appl	ication.		
	CO5: Learn the security issues and their implementation at IP and system level.											
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	3	1	3	3	1	1	1	2
CO2	3	3	2	2	3	3	3	1	1	1	1	2
CO3	3	3	2	2	3	3	3	2	1	1	1	2

CO4	3	1	1	1	3	1	3	1	1	1	1	2
CO5	3	3	2	2	3	3	3	2	1	1	1	2

			d the bas gent agei		he theo	ry and	practic	e of Art	tificial In	telligenc	e as a dis	cipline
Artificial	CO2: U	CO2: Understand search techniques and gaming theory. CO3: The student will learn to apply knowledge representation techniques and problem solving strategies to common AI applications.										
Intelligence (RCS	CO3: T											
702)	solving											
	CO4: S	CO4: Student should be aware of techniques used for classification and clustering.										
	CO5: S	CO5: Student should aware of basics of pattern recognition and steps required for it										
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	3	2	1	1	3	3	3
CO2	3	3	3	3	2	3	2	1	1	3	3	3
CO3	3	3	3	2	2	2	3	1	1	2	3	3
CO4	3	3	3	3	3	3	2	1	1	2	2	3
CO5	3	3	3	3	2	2	2	1	1	3	2	3

	CO1: T Resolut		human a	spiratio	ns and	their fu	ılfillme	nt throu	ugh Righ	t understa	anding ar	nd	
UHCHAAF	CO2: Understanding Human being and its expansion.												
(ROE-074)	CO3: Understanding of activities of the Self												
	CO4: U	CO4: Understanding Co-existence with other orders.											
	CO5: U	CO5: Understanding expansion of harmony from self to entire existence.											
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	1	3	2	2	2	2	3	3	2	1	3	
CO2	2	3	1	3	3	2	1	3	2	2	1	3	
CO3	2	2	3	2	3	2	1	3	1	3	1	3	
CO4	3	2	3	3	2	3	1	3	3	2	1	3	
CO5	3	2	2	3	3	1	2	3	3	2	1	3	

Practical

	CO1: L	earn the	impleme	ntation	of clas	sical en	cryptic	n techr	niques.				
	CO2: Learn the implementation of mathematical theorems.												
Network Security CO3: Learn the implementation of asymmetric encryption technique and key exchange										exchange	;		
Lab (RIT-751)		algorithm. CO4: Learn implementation of message authentication and digital signature.											
, , , ,													
	CO5: L	CO5: Learn simulation of Elliptic Curve Cryptography.											
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	2	2	1	3	3	1	1	2	2	
CO2	3	3	3	2	2	1	2	1	1	1	2	2	
CO3	3	3	3	2	2	1	3	3	1	1	2	2	
CO4	3	3	3	2	2	1	3	3	1	1	2	2	
CO5	3	3	3	2	2	1	3	2	1	1	2	2	

	CO1: Understand of formal logic and PROLOG language.
	CO2: Learn the basics of the PROLOG programming language, including basic syntax and the
Artificial	selection and search strategies of PROLOG
Intelligence Lab	CO3: Understand how does prolog search a knowledge base.
(RCS 752)	CO4: Understand will include the syntax, semantics and the natural deduction proof system of
	propositional and predicate logic.
	CO5: Demonstrate the skills in implementing various real life problems like family member

	and the	and their relationship, sitting arrangement etc.											
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	3	3	3	3	2	2	2	3	2	2	
CO2	3	3	3	2	2	3	3	2	3	3	2	3	
CO3	3	3	3	3	3	2	2	2	3	3	2	3	
CO4	3	3	3	2	3	2	3	3	3	2	2	2	
CO5	3	3	3	3	3	3	2	3	2	2	2	3	