

KIET GROUP OF INSTITUTIONS, GHAZIABAD

Department of Computer Science & Information Technology

Course Outcome

Session 2020-21

Department of Computer
Science & Information
Technology

KIET GROUP OF INSTITUTIONS, GHAZIABAD

Department of Computer Science & Information Technology

Index

		3 rd Semester
S No.	Subject Code	Subject Name
1	KAS-302	Maths IV
2	KAS-301	Technical Communication
3	KCS-301	Data Structure
4	KCS-302	Computer Organization and Architecture
5	KCS-303	Discrete Structures & Theory of Logic
6	KNC-301	Computer System Security
7	KCS-351	Data Structures Using C Lab
8	KCS-352	Computer Organization Lab
9	KCS-353	Discrete Structure & Logic Lab
10	KCS-354	Mini Project or Internship Assessment

		5 th Semester
S No.	Subject Code	Subject Name
1	KCS 055	Machine Learning Techniques
2	KNC 502	Indian Tradition, Culture and Society
3	KCS 501	Database Management Systems
4	KCS 503	Design And Analysis Of Algorithm
5	KCS 054	Object Oriented System Design
6	KIT 501	Web Technologies
7	KCS 551	Database Management Systems Lab
8	KCS 553	Design and Analysis of Algorithm Lab
9	KIT 551	Web Technologies Lab

CO PO and Mapping of CO PO 2nd Year

(2019-2023 BATCH)

Session:- 2020-21 Semester:- 3rd

S.No.	Subject	Code
1	Math-IV	KAS 302
2	Technical Communication	KAS 301
3	Data Structure	KCS 301
4	Computer Organization and Architecture	KCS 302
5	Discrete Structures & Theory of Logic	KCS 303
6	Computer System Security	KNC 301
7	Data Structures Using C Lab	KCS351
8	Computer Organization Lab	KCS352
9	Discrete Structure & Logic Lab	KCS353
10	Mini Project or Internship Assessment	KCS354

Theory

	CO1	Identify equation		cation of p	partial dif	ferential e	equations	and apply	for solvi	ng linear	and non-l	inear part	ial differe	ential	K1,K3
	CO2			assification ate the ge			partial dif	ferential of	equations	and by us	sing the m	ethod of	separation	n of	K1,K3
Mathematics -IV	СОЗ	Rememb		ncept of r	noments,	skewers,	moment g	generating	g function	, curve fit	ting and a	nnalyze th	e correlat	ion and	K1,K4
(KAS 302)	CO4			ncept of p		y, random	variable	and apply	for solvi	ng the pro	blem rela	nted to dis	crete and		K1,K3
	CO5	Understa propertie		atistical n	nethod of	data samp	ples , hyp	othesis tes	sting and	applying	the study	of control	chart and	l their	K2,K3
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	2	3	2	3	2						3	2
CO2	CO2 3 3 3 3 2 3 1 1 3 3										3				
CO3	•	3	3	2	2	3	3	1				1	3	3	2
CO4		3 3 3 2 3 3 2 2 3 3										2			
CO5		3	3	3	3	3	3	1				1	3	3	3

	CO1		s will be of Engineer		o underst	and the na	ature and	objective	of Techi	nical Con	nmunicati	on releva	nt for the	work	K1,K2
Technical	CO2	Student dimensi		ize the te	chnical w	riting for	the purp	oses of T	echnical (Commun	ication an	d its expo	osure in v	arious	К3
(KAS301)	CO3	Student	s would i	mbibe inp	outs by pi	resentatio	n skills to	enhance	confider	ce in face	e of diver	se audien	ce.		К3
(KAS301)	CO4		cal comm al compet		skills wi	ll create a	vast kno	w-how o	f the appl	ication of	f the learn	ning to pro	omote the	ir	K6
	CO5	It would	d enable t	hem to ev	valuate th	eir effica	cy as flue	nt & effic	cient com	municato	ors by lear	ning the	voice-dyn	amics.	K5
CO \ PO Mapp	ing	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1							1	1	1	2	2	2	2	2	1
CO2									1	1	3	3	2	1	2
CO3									1	2	3	2	2	1	1
CO4				·			2	1		1	3	2	3	2	2
CO5										2	3	1	1	1	1

	CO1			omplexity olications.	_	thms by D	escribing	various o	lata struct	ures and	their repre	esentation	s in memo	ory with	K1,K2
Data	CO2			ept of rec c memory			ent variou	ıs data str	uctures lil	ke stack, o	queue, list	t, tree, and	l graph us	ing	K2,K3
Structures (KCS 301)	CO3	Study ar	nd Apply	various se	earching a	and sorting	g algorith	ms on dif	ferent data	a structure	es.				К3
(KCS 301)	CO4		the algor		plementa	tion of no	n-linear d	lata struct	ures such	as search	ing and so	orting by o	comparing	g their	K4
	CO5	Evaluate	the alter	nate data	structures	algorithn	n with res	pect to its	performa	ance to so	lve a real-	-world pro	oblem.		K5,K6
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	2	2	1	1	1	1	1	1	1	2	3	3
CO2 3 3 2 2 2 1 1 1 1 1 2									2	3	3				
CO3 3 3 2 3 2 1 1 1 1 1 1 2 3										3					
CO4		3	3 3 2 3 2 2 1 1 1 1 1 2 3											3	
CO5		3	3	3	3	2	2	1	1	2	2	2	3	3	3

	CO1	Underst	and and d	escribe th	e basic or	ganizatio	n and ope	eration of	the comp	onents of	a digital o	computer	system.		K1,K2
Computer	CO2	Illustrate	e various	arithmetic	and logi	cal operat	tions on d	ifferent ty	pes of nu	mbers to	design an	arithmeti	ic and log	ic unit.	К3
Organization and	CO3	Analyze	the perfo	ormance is	ssues of th	ne process	sor and cl	assify the	control u	nit implei	nentation	techniqu	es.		K4
Architecture (KCS 302)	CO4	Categor	ize the hid	erarchical	memory	system ar	nd examin	e the virt	ual memo	ry impler	nentation	technique	es.		K3,K4
	CO5			erent I/O o ard I/O in		fer techni	ques, and	describe	the differ	ent ways	of commu	inication	among I/O)	K2,K5
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	2	1	2	1	1	1	1		1	1	3	3
CO2		3	3	3	1	3	1			1		1	1	3	3
CO3		2	2	2	1	3	1			1		1	1	3	3
CO4	CO4 2 2 2 1 1 1 1 1 1 1 3										3				
CO5		2	2	2	1	1	1			1		1	1	3	3

	CO1	_			•	tions which		to define	and unde	erstand the	e basic fur	ndamental	l mathema	atical	K ₁ ,K ₂
Discrete Structure	CO2	Discuss	various st	ructures a	and prope	rties of m	odern alg	ebra.							K ₁ ,K ₂
and Theory of Logic	СОЗ		logical at				et up mat	hematical	models f	or real lif	e problem	s by appl	ying adva	nced	K ₃ ,K ₄
(KCS-303)	CO4	Demons	trate vario	ous proble	ems in the	field of o	computer	science us	sing trees	and grapl	ıs.				K5,K6
	CO5	Design a	a solution	with the l	help of in	duction h	ypotheses	, simple in	nduction 1	proofs and	d recurren	ces.			K3,K4
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	2	2	3	2	2	1	1	1	1	1	2	3	3
CO2		3	3	3	3	2	2	1	1	1	1	1	2	3	3
CO3 3 2 2 3 3 2 2 1 1 1 1 2 3										3					
CO4		3	3 3 2 2 3 2 2 1 1 1 1 2 3										3		
CO5		3	2	2	2	3	2	2	1	1	1	1	2	3	3

	CO1	To disco	ver softw	are bugs	that pose	cyber sec	urity threa	ats and to	explain h	ow to fix	the bugs	to mitigat	e such thr	eats	K1,K2
	CO2	To disco	over cyber	attack sc	enarios to	web bro	wsers and	web serv	ers and to	explain l	now to mi	tigate suc	h threats		K2
Computer System Security	CO3		over and e		obile softv	ware bugs	posing cy	yber secui	rity threat	s, explain	and recre	ate explo	its, and to	explain	К3
(KNC-301)	CO4		ulate the u various th			er security	y in critica	al comput	er system	s, networ	ks, and w	orld wide	web, and	to	K4
	CO5	To artice	ulate the v	well know	n cyber a	ttack inci	dents, exp	olain the a	ttack scer	arios, and	d explain	mitigation	n techniqu	ies.	K5,K6
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	1	3	2	2	2	2	3	3	2	1	3	2	1
CO2		2	3	1	3	3	2	1	3	2	2	1	3	1	2
CO3		2	2	3	2	3	2	1	3	1	3	1	3	2	3
CO4	CO4			3	3	2	3	1	3	3	2	1	3	1	2
CO5		3	2	2	3	3	1	2	3	3	2	1	3	3	1

Practical

	CO1	Impleme	ent variou	s Sorting	and Searc	ching Alg	orithms.								К3
Data Structures	CO2	Analyze	the recur	sive imple	ementatio	n of diffe	rent sortii	ng and sea	arching al	gorithms.					K4
Using C	CO3	Impleme	ent variou	s data Str	ucture usi	ng static	and dynar	nic memo	ory allocat	ion.					K3,K4
Lab (KCS 351)	CO4	Demons	trate vari	ous operat	tions like	traversal,	insertion.	, deletion	on tree da	ıta structu	re.				К3
	CO5	Design a	and Imple	ment prac	ctical appl	lications b	ased on g	graphs and	d shortest	paths.					K5
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	2	2	2	1	1	1	1	1	2	3	3
CO2		3	3	3	3	2	2	1	1	1	1	1	2	3	3
CO3		3	3	3	3	2	2	1	1	1	1	1	2	3	3
CO4		3	3	3	3	2	2	1	1	1	1	1	2	3	3
CO5		3	3	3	3	2	2	1	1	1	1	1	2	3	3

	CO1	Examine	e the outp	ut of the l	oasic logi	c gates fo	r differen	t combina	tions of i	nput.					К3
Computer	CO2	Design a		ate the co	mbinatio	nal circuit	s for bina	ry arithm	etic (such	n as adder	s, subtrac	tors, and	multiplier	e) and	K6
Organization Lab (KCS 352)	СОЗ	_	and simul gic gates	ate combi	national	circuits fo	r encoder	rs/decoder	s and sele	ection dev	ices mult	iplexers/d	le-multipl	exers	K6
(1105 002)	CO4	Design a	and simul	ate the ba	sic buildi	ng block	of the seq	uential ci	rcuits (i.e.	. SR and l	O Flip Flo	ps) using	logic gat	es.	K6
	CO5	Design a	and simul	ate the 2-	bit Arithn	netic Log	ic Unit us	ing logic	gates.						K6
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	2	2	1	3	2			1		1	1	3	3
CO2 3 2 3 1 3 2 1 1 1 3 3									3						
CO3		2	2	3	1	3	1			1		1	1	3	3
CO4 2 2 3 1 2 1 1 1 3								3							
CO5		2	2	3	1	2	1			1		1	1	3	3

	CO1	To Impl	ement vai	rious Set	operations	5.									K2,K3
Discrete	CO2	To Dem	onstrate v	arious ba	sic Maple	comman	ds.								K_1,K_2
Structure and Logic	CO3	To Impl	ement va	rious Indu	ctive tech	niques, R	lecursive	Techniqu	es and exp	pected val	lue proble	ms using	Maple sca	ript.	K ₃ ,K ₄
Lab (KCS- 353)	CO4	To Desi	gn and In	nplement j	practical a	pplication	ns based o	on graphs	and short	est paths.					K5
222,	CO5	To Impl	ement vai	rious prog	ramming	problems	based on	binary se	earch.						K3, K4
CO \ PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	2	2	3	2	2	1	1	1	1	1	2	3	3
CO2		3	3	3	3	2	2	1	1	1	1	1	2	3	3
CO3		3	2	2	3	3	2	2	1	1	1	1	2	3	3
CO4		3	3	2	2	3	2	2	1	1	1	1	2	3	3
CO5		3	2	2	2	3	2	2	1	1	1	1	2	3	3

	CO1	Analyze	and und	erstand th	ne real life	problem	and app	ly their kı	nowledge	to get pr	ogrammir	ng solutio	n		K1,K2,K4
Mini Project or	CO2	~ ~			ign proce r needs ar	_		_	nd applica	ation of d	iverse tec	hnical kn	owledge	and	K2,K3
Internship Assessment	CO3	Use the	various t	ools and t	technique	s, coding	practices	for deve	loping rea	al life sol	ution to th	ne probler	n.		K2,K4
(KCS354)	CO4	Writing	and preso	entation s	kill by us	ing repor	t about w	hat they a	are doing	in mini p	roject.				K1,K5
	CO5	Find ou	t the error	rs in appli	ication so	lutions a	nd its imp	lementati	ions.						K5,K6
CO \ PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	2	3	3	2	1	3	3	3	3	2	1
CO2		3	3	3	2	3	3	2	1	3	3	3	3	3	2
CO3		3 3 3 3 3 2 1 3 3 3 1											2		
CO4		3	3	2	2	3	3	2	1	3	3	3	3	2	3
CO5		3	3	2	2	3	3	2	1	3	3	3	3	2	3

CO PO and Mapping of CO PO 3rd Year

(2018-2022 BATCH)

Session:- 2020-21 Semester:- 5th

S.No.	Subject	Code
1	Machine Learning Techniques	KCS 055
2	Database Management System	KCS 501
3	Design and Analysis of Algorithm	KCS 503
4	Web Technology	KIT 501
5	Object Oriented System Design	KCS 054
6	Indian Tradition, Culture and Society	KNC 502
7	Database Management System Lab	KCS 551
8	Design and Analysis of Algorithm Lab	KCS 553
9	Web Technology Lab	KIT 551

Theory

	CO1	To unde	rstand the	need for	machine	learning f	or variou	s problem	solving						K_1, K_2
Learning Techniques (KCS 055)CO3To design appropriate machine learning algorithms and apply the algorithms to a real-world problems.K2CO4To understand the neural nets for solving real time problem and evaluating the performance.K5	K_2 , K_3														
	K_2 , K_3														
_	CO4	O4 To understand the neural nets for solving real time problem and evaluating the performance. K ₅ ,	K_5 , K_6												
CO5 To optimize the models learned and report on the expected accuracy that can be achieved by anal		ınalyzing	the mode	ls.	K4,K5										
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	2	3	2	2	2	1	1		1	3	2	3
CO2		3	3	3	3	3	2	2		1		1	3	3	3
CO3		3	Inderstand a wide variety of learning algorithms and how to solve computing problem. K2, design appropriate machine learning algorithms and apply the algorithms to a real-world problems. K3, design appropriate machine learning algorithms and apply the algorithms to a real-world problems. K4, or possible the models learned and report on the expected accuracy that can be achieved by analyzing the models. K4, or possible the models learned and report on the expected accuracy that can be achieved by analyzing the models. K4, or possible the models learned and report on the expected accuracy that can be achieved by analyzing the models. K4, or possible the models learned and report on the expected accuracy that can be achieved by analyzing the models. K4, or possible the models learned and report on the expected accuracy that can be achieved by analyzing the models. K4, or possible the models learned and report on the expected accuracy that can be achieved by analyzing the models. K4, or possible the models learned and report on the expected accuracy that can be achieved by analyzing the models. K4, or possible the models learned and report on the expected accuracy that can be achieved by analyzing the models. K4, or possible the models learned and report on the expected accuracy that can be achieved by analyzing the models.	3											
CO4		3	3	3	3	3	2	2		1		1	3	3	3
CO5		3	3	3	3	3	2	2		1		1	3	3	3

	CO1	Apply k	nowledge	e of datab	ase for re	eal life ap	plication	s.							K1,K2,K3
Database	CO2	Apply q	uery prod	cessing te	chniques	to autom	ate the re	al time p	roblems o	of databas	ses.				K3, K4
Management Systems	СОЗ	Identify	and solv	e the redu	ındancy p	oroblem i	n databas	e tables u	sing norr	nalizatio	1.				K2, K3
(KCS 501)	CO4					tions, thei			ey will fa	miliar wi	th broad r	ange of d	latabase		K2, K3
	CO5	Design,	develop	and imple	ement a s	mall data	base proj	ect using	database	tools.					K3, K5,K6
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	3	2	1	1	2	2	2	3	2	3	3
CO2		3	3	3	3	2	1	1	1	2	2	3	2	3	3
CO3		3	3	3	3	2	1	1	1	2	2	2	2	3	3
CO4		3	2	3	3	2	2	2	1	2	2	2	2	3	3
CO5		2	2	3	3	2	2	2	2	2	2	2	2	3	3

	CO1		and the de	~ ~	ew algori	thms, pro	ve them c	correct, an	d analyze	their asy	mptotic a	nd absolu	te runtime	e and	K ₂ ,K ₄
Design and	CO2	Apply th	ne algorith	ım to solv	e the pro	blem and	prove tha	t the algoi	rithm solv	es the pro	oblem cor	rectly.			K ₃ ,K ₄
Design and Analysis of Algorithm	CO3					or decidir lo not adn		r an algor	ithm is ef	ficient, aı	nd know b	y evaluat	ing many		K ₄ ,K ₅
(KCS 503)	CO4	Apply a	nd design	the classi	ical sortin	g, searchi	ng, optim	ization an	ıd graph a	lgorithms	S.				K3, K5
	CO5					hniques fo and greed		ng algorit	hms and a	applying t	he technic	ques of re	cursion, d	livide-	K3, K6
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	3	2	1	1				1	3	3	3
CO2		3	3	3	3	2	1	1				1	3	2	3
CO3		3	3	2	2	3	1	1				1	2	2	2
CO4		3	3	3	3	3	1	1				1	2	3	2
CO5		3	3	3	3	3	1	1				1	3	2	2

Web Technology (KIT 501)	CO1	Apply the		edge of the	e internet	and relate	ed interne	t concepts	s that are	vital in ur	derstandi	ng web ap	plication		K3,K6
	CO2		and, analy l its applic		pply the r	ole of ma	rkup lang	uages like	e HTML,	DHTML,	and XMI	in the w	orkings o	f the	K2,K3
Technology	CO3				opment so narket to			ML, Apac	he Tomca	it etc. and	identifies	s the envii	ronments		K3,K6
CO4 Understand, analyze, and build dynamic web application using servlet and JSP.				pages usir	ng client-s	side progr	amming J	avaScript	and deve	elop the w	eb	K2,K4, K6			
	CO5	Underst	and the in	npact of v	veb design	ning by da	ntabase co	onnectivity	y with JD	ВС					K2, K3, K4
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	1	3	3	2	1		2	2	1	3	3	3
CO2		2	3	2	1	3	1			3	2	3	2	3	3
CO3		2	3	2	2	3	2	1		2	2	3	2	3	3
CO4		3	3	3	3	3	2	2		2	2	3	2	3	3
CO5		3	3	2	3	3	1			2	1	1	3	3	3

	CO1	Underst applicat	-	pplication	developi	ment and	analyze tł	ne insight	s of objec	t oriented	l program	ming to i	mplement	Ī	K_1, K_2, K_4
Object Oriented	CO2	Underst	and, anal	yze and a	pply the r	ole of ove	erall mode	eling conc	cepts (i.e.	System,	structural)).			K_2, K_3, K_4
System	CO3	Learn th	ne structui	red analys	sis / struct	tured desi	gn and an	alyze the	oops pro	grammin	g style.				K ₂ ,K ₄
Design (KCS 054)	CO4	Apply a	nd evalua	te the cor	ncepts of	C++ for t	he implen	nentation	of object	oriented	concepts.				K3, K5
	CO5	Design	and evalu	ate the pr	ogrammiı	ng concep	ots to imp	lement ob	ject orier	nted mode	eling in C	++.			K5, K6
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	2	1	3	3	3	1	2	2	3	2	3	3	3
CO2		3	3	2	3	3	3	1	2	3	3	3	3	3	3
CO3		3	2	2	2	3	3	1	2	2	3	2	3	3	3
CO4		3	3	3	3	3	3	2	2	3	3	3	3	3	3
CO5		3	3	3	3	3	3	2	2	3	3	3	3	3	3

	CO1	To ident	ify and u	nderstand	the roots	and detai	ls of Soci	ety State a	and Polity	in India.					K1, K2
Indian	CO2	To unde	rstand the	e importar	nce of Ind	ian Litera	ture, Cult	ure, Tradi	ition, Prac	ctices and	to apply i	in present	system.		K2, K3
Tradition, Culture and	CO3			dian Relig em Indian				nd in shac	dow of Pro	e-Vedic a	nd Vedic	Religion,	Buddhisr	n,	K3, K4
Society (KNC 502) CO4 To analyze the Science, Management and Indian Knowledge System and to apply in present system. K3, K4															
	To evaluate the Indian Architect Engineering and Architecture in Ancient India Indian's Cultural Contribution to the					K5,K6									
CO \ PO Maj	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	2	2	2	2	2	1	2	1	1	2	2	1	1
CO2		2	2	2	2	2	2	2	2	1	1	2	2	1	1
CO3		2	2	1	2	2	2	1	2	1	1	2	2	1	1
CO4		3	1	1	1	1	1	1	1	1	1	3	3	2	1
CO5		2	1	1	1	1	1	1	1	1	1	2	2	2	1

Practical

	CO1	Underst	and and a	apply MY	SQL pro	ducts for	creating	tables, vi	ews, inde	xes, sequ	ences and	l other da	tabase ob	jects.	K1,K2,K3
Database Management	CO2	_	•			chema fo	•	•	se, banki	ng data b	ase, libraı	ry informa	ation syst	em,	K4,K5
Systems Lab (KCS 551)	CO3	Design	and imple	ement sin	nple and o	complex of	queries us	sing DDL	, DML, I	OCL and	TCL.				K4,K5
(KC 5 331)	CO4	Impleme	ent PL/SO	QL block	s, proced	ure functi	ons, pack	ages and	triggers,	cursors.					K5
	CO5	Demons	trate enti	ty integri	ty, refere	ntial integ	grity, key	constrain	nts, and d	omain co	nstraints	on databa	se.		K1,K3
CO \ PO Map	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	2	3	2	2	2	1	1	2	1	2	2	3	3
CO2		3	3	2	2	3	1	2	1	2	2	3	3	3	3
CO3		3	2	2	2	2	2	1	1	2	1	2	2	3	3
CO4		2	2	3	2	2	2	2	1	2	2	3	2	3	3
CO5		3	3	2	2	3	1	1	1	2	1	2	3	3	3

	CO1				rious sort ort, Heap				d Bubble	Sort, Sel	ection So	rt, Inserti	on Sort, S	hell	K2,K3,K4
Design and	CO2	Demons	trate the	working o	of Search	ing algori	ithms in c	lata struc	ture.						К3
Analysis of Algorithm	CO3	Apply d	ifferent a	lgorithm	design te	chniques	like divid	le and co	nquer, gre	eedy meth	ods.				K3,K4
Lab (KCS 553)	CO4				e efficien non-Subse				neering o	lesign sitt	uations fo	r alphanu	meric stri	ngs and	К3
	CO5	Redefin	e and for	nulate the	e existing	algorith	n of Back	xtracking	to find th	e solution	n for N-Q	ueen prob	olem.		K6
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	2	2	1							3	3	2
CO2		3	3	2	2	1							3	2	2
CO3		2	3	2	3	2							2	3	3
CO4		2	2	2	1	1							2	2	2
CO5		2	2	2	1	2							2	2	3

	CO1		and funda, Applet,		of web de	evelopme	nt and Ja	va, includ	ling defin	ing classe	es, invoki	ng metho	ds, using	class	K2,K4
Web	CO2			yze, and a		role of sc	cripts/lang	guages lik	e HTML	, DHTMI	L, CSS, X	ML, DO	M, and SA	AX to	K2,K3,K5
Technology Lab	CO3	Underst	and, anal	yze, and	design the	e role of J	avaScrip	t for dyna	mic web	pages.					K2,K4,K5
(KIT 551)	CO4	_	and deplo	-	nt compo	nents usii	ng EJB, a	nd databa	se tables	using JD	BC and p	roduce va	arious resi	ults	K4,K5
	CO5	_	•	y a serve re it on d		a applica	tion calle	d Servlet	& JSP to	ols to cat	ch form d	ata sent f	rom clien	t,	K3,K4
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	3	3	3	3	2	1		2	2	2	2	3	3
CO2		2	3	2	3	3	2	2		2	2	2	2	3	3
CO3		2	3	3	3	3	1	1		2	2	3	3	3	3
CO4		3	3	3	3	3	2			1	2	1	3	3	3
CO5		3	3	3	3	3	2			1	1	2	3	3	3