

**KIET GROUP OF INSTITUTIONS, GHAZIABAD** 

Department of Computer Science & Information Technology





## **KIET GROUP OF INSTITUTIONS, GHAZIABAD**

Department of Computer Science & Information Technology

## Index

|       |              | 4 <sup>th</sup> Semester             |
|-------|--------------|--------------------------------------|
| S No. | Subject Code | Subject Name                         |
| 1     | KOE048       | Electronics Engineering              |
| 2     | KVE401       | Universal Human Values               |
| 3     | KCS402       | Theory of Automata & Formal Language |
| 4     | KCS401       | Operating System                     |
| 5     | KCS403       | Microprocessor                       |
| 6     | KNC402       | Python Programming                   |
| 7     | KCS451       | Operating Systems Lab                |
| 8     | KCS452       | Microprocessor Lab                   |
| 9     | KCS453       | Python Programming Lab               |

|       |              | 6 <sup>th</sup> Semester                   |
|-------|--------------|--------------------------------------------|
| S No. | Subject Code | Subject Name                               |
| 1     | KCS601       | Software Engineering                       |
| 2     | KIT601       | Data Analytics                             |
| 3     | KCS603       | Computer Networks                          |
| 4     | KIT061       | Blockchain Architecture Design             |
| 5     | KOE061       | Real Time Systems                          |
| 6     | KNC601       | Constitution of India, Law and Engineering |
| 7     | KCS651       | Software Engineering Lab                   |
| 8     | KIT651       | Data Analytics Lab                         |
| 9     | KCS653       | Computer Networks Lab                      |

### 13 KM STONE, GHAZIABAD-MEERUT ROAD, GHAZIABAD – 201206 Website: www.kiet.edu

# CO PO and Mapping of CO PO 2nd Year (2019-2023 BATCH)

### Session:- 2020-21 Semester:- 4th

| S.No. | Subject                              | Code   |
|-------|--------------------------------------|--------|
| 1     | Electronics Engineering              | KOE048 |
| 2     | Universal Human Values               | KVE401 |
| 3     | Theory of Automata & Formal Language | KCS402 |
| 4     | Operating System                     | KCS401 |
| 5     | Microprocessor                       | KCS403 |
| 6     | Python Programming                   | KNC402 |
| 7     | Operating Systems Lab                | KCS451 |
| 8     | Microprocessor Lab                   | KCS452 |
| 9     | Python Programming Lab               | KCS453 |

## **<u>Theory</u>**

|             | CO1  | Study the co                | onstructio | n and wo   | rking of a | ı p-n junc  | tion diode   | e,          |           |            |             |           |          |      | K1,K2 |
|-------------|------|-----------------------------|------------|------------|------------|-------------|--------------|-------------|-----------|------------|-------------|-----------|----------|------|-------|
|             | CO2  | Understand                  | its applic | ations lik | e rectifie | rs, clipper | rs, clampe   | rs and vo   | ltage mul | tipliers.  |             |           |          |      | K3    |
| Electronics | CO3  | Learn the ba                | asic const | ruction, v | vorking a  | nd charac   | teristics of | of BJT and  | d FET an  | d analysis | s of transi | stor ampl | ifiers.  |      | K4    |
| Engineering | CO4  | Understand                  | the basic  | concepts   | of operat  | ional amp   | plifier and  | l its appli | cations.  |            |             |           |          |      | K4,K5 |
|             | CO5  | Study the m<br>amplitude, p | 0          |            | 0          |             | . 0          |             | neter and | CRO, an    | d learn th  | e measure | ement of |      | K5,K6 |
| CO \ PO Map | ping | PO1                         | PO2        | PO3        | PO4        | PO5         | PO6          | PO7         | PO8       | PO9        | <b>PO10</b> | PO11      | PO12     | PSO1 | PSO2  |
| CO1         |      | 3                           | 3          | 2          | -          | 3           | -            | 1           | -         | -          | -           | -         | 1        | 3    | 3     |
| CO2         |      | 3                           | 3          | 2          | -          | 3           | -            | 1           | -         | -          | -           | -         | 1        | 3    | 3     |
| CO3         |      | 3                           | 3          | 2          | -          | 3           | -            | 1           | -         | -          | -           | -         | 1        | 3    | 3     |
| CO4         |      | 3                           | 3          | 2          | -          | 3           | -            | 1           | -         | -          | -           | -         | 1        | 3    | 3     |
| CO5         |      | 3                           | 3          | 2          | -          | 3           | -            | 1           | -         | -          | -           | -         | 1        | 3    | 3     |

|                           | CO1  | Understand<br>basic guidel<br>process of v<br>scenario in | ines, cont<br>alue educ | ent and ation, exp | -          |            |            | C C         |            |            |             |             |             |         | K1,K2 |
|---------------------------|------|-----------------------------------------------------------|-------------------------|--------------------|------------|------------|------------|-------------|------------|------------|-------------|-------------|-------------|---------|-------|
|                           | CO2  | Distinguish<br>Body.                                      | between                 | the Self a         | nd the Bo  | ody, unde  | rstand the | e meaning   | of Harm    | ony in the | e Self the  | Co-existe   | ence of Se  | elf and | K1,K2 |
| Universal<br>Human Values | CO3  | Understand<br>human relat<br>explore thei                 | ionships a              | and                |            | -          |            | trust, res  | pect and o | other natu | rally acce  | eptable fe  | elings in I | human-  | K2,K4 |
|                           | CO4  | Understand                                                | the harmo               | ony in nat         | ture and e | existence, | and work   | c out their | mutually   | fulfilling | g participa | ation in th | e nature.   |         | K2,K4 |
|                           | CO5  | Distinguish<br>environmen                                 |                         |                    |            | al practic | es, and st | art worki   | ng out the | e strategy | to actuali  | ze a harn   | nonious     |         | K2,K3 |
| CO \ PO Mpp               | oing | PO1                                                       | PO2                     | PO3                | PO4        | PO5        | PO6        | <b>PO7</b>  | PO8        | PO9        | PO10        | PO11        | PO12        | PSO1    | PSO2  |
| CO1                       |      | 2                                                         | 1                       | 2                  | 2          | 2          | 2          | 2           | 3          | 3          | 2           | 1           | 3           | 1       | 1     |
| CO2                       |      | 2                                                         | 1                       | 2                  | 2          | 2          | 2          | 3           | 3          | 2          | 2           | 1           | 3           | 1       | 1     |
| CO3                       |      | 2                                                         | 1                       | 2                  | 3          | 3          | 2          | 3           | 3          | 2          | 2           | 1           | 3           | 1       | 1     |
| CO4                       |      | 2                                                         | 1                       | 2                  | 2          | 2          | 3          | 3           | 3          | 3          | 2           | 1           | 3           | 1       | 1     |
| CO5                       |      | 2                                                         | 1                       | 2                  | 3          | 3          | 2          | 3           | 3          | 3          | 2           | 1           | 3           | 1       | 1     |

|                         | CO1 | Acquire a fu           | ull unders | tanding a  | nd applic   | ability of  | Automat     | a Theory   | as the bas | sis of all c | computer    | science la | anguages    | design | K1,K2 |
|-------------------------|-----|------------------------|------------|------------|-------------|-------------|-------------|------------|------------|--------------|-------------|------------|-------------|--------|-------|
| Theory of<br>Automata & | CO2 | Identify diff<br>life. | ferent for | mal langu  | age and c   | lesign the  | recogniz    | er for reg | ular langı | lages to e   | establish t | heir appli | cability ii | n real | К3    |
| Formal<br>Language      | CO3 | Ability to a           | nalyze &a  | amp; Des   | ign gramr   | nars for d  | lifferent f | ormal lan  | guages     |              |             |            |             |        | K4    |
|                         | CO4 | Understand             | the desig  | ning of P  | ushdown     | Automat     | a and Tur   | ing mach   | ines       |              |             |            |             |        | K4,K5 |
|                         | CO5 | Determine t            | he decida  | bility and | l intractal | oility of c | omputatio   | onal probl | ems        |              |             |            |             |        | K5,K6 |
| CO \ PO Mpp             | ing | PO1                    | PO2        | PO3        | PO4         | PO5         | PO6         | <b>PO7</b> | PO8        | PO9          | PO10        | PO11       | PO12        | PSO1   | PSO2  |
| CO1                     |     | 3                      | 2          | 2          | 2           | 1           |             |            |            |              | 1           | 1          | 1           | 2      | 2     |
| CO2                     |     | 2                      | 3          | 3          | 2           | 1           |             |            |            |              | 1           | 1          | 1           | 2      | 2     |
| CO3                     |     | 2                      | 2          | 3          | 3           | 1           |             |            |            |              | 1           | 1          | 1           | 2      | 2     |
| CO4                     |     | 2                      | 3          | 3          | 2           | 1           |             |            |            |              | 1           | 1          | 1           | 1      | 1     |
| CO5                     |     | 1                      | 3          | 2          | 3           | 1           |             |            |            |              | 1           | 1          | 1           | 1      | 1     |

|                               | CO1  | Illustrate th | e need, ev                                                                                                    | volution,   | various ca | tegories a | and desig  | n issues o | of operation | ng system | IS.       |            |           |         | K2,K3 |
|-------------------------------|------|---------------|---------------------------------------------------------------------------------------------------------------|-------------|------------|------------|------------|------------|--------------|-----------|-----------|------------|-----------|---------|-------|
|                               | CO2  | Analyze the   | e problem                                                                                                     | s related   | to concur  | rency and  | the diffe  | rent syncl | hronizatio   | on mecha  | nism avai | lable.     |           |         | K4    |
| Operating<br>System           | CO3  | Apply the to  | echniques                                                                                                     | s used to i | mplemen    | t processe | es and thr | eads as w  | ell as the   | different | algorithn | ns for pro | cess sche | duling. | K5    |
|                               | CO4  | Analyze the   |                                                                                                               |             |            |            |            |            |              |           |           |            |           |         | K4    |
|                               | CO5  | Understand    | derstand the Security issues, I/O management, Disk management and file system structure in operating systems. |             |            |            |            |            |              |           |           |            |           |         |       |
| CO \ PO Mpp                   | oing | PO1           | PO2                                                                                                           | PO3         | PO4        | PO5        | PO6        | <b>PO7</b> | PO8          | PO9       | PO10      | PO11       | PO12      | PSO1    | PSO2  |
| CO1                           |      | 3             | 3                                                                                                             | 3           | 3          | 3          | 2          | 1          | 1            | 1         | 1         | 1          | 3         | 3       | 3     |
| CO2                           |      | 3             | 3                                                                                                             | 2           | 3          | 2          | 2          | 2          | 1            | 1         | 1         | 1          | 3         | 3       | 3     |
| CO3                           |      | 3             | 3                                                                                                             | 3           | 3          | 3          | 3          | 1          | 1            | 1         | 1         | 1          | 3         | 3       | 3     |
| CO4 3 3 2 3 2 3 3 2 1 1 2 3 3 |      |               |                                                                                                               |             |            |            |            |            | 3            |           |           |            |           |         |       |
| CO5                           |      | 3             | 2                                                                                                             | 2           | 2          | 2          | 3          | 3          | 2            | 1         | 1         | 2          | 3         | 3       | 3     |

|                | CO1 | Apply a | basic con              | ncept of d                | igital fun | damental  | s to Micr  | oprocesso  | r based p  | ersonal c  | omputer s | ystem.     |         |      | K3    |
|----------------|-----|---------|------------------------|---------------------------|------------|-----------|------------|------------|------------|------------|-----------|------------|---------|------|-------|
|                | CO2 | Analyze | the s/w a              | & h/w stru                | ucture of  | the 8085  | Micropro   | cessor an  | d analyze  | its prope  | erties.   |            |         |      | K4    |
| Microprocessor | CO3 | Analyze | e the s/w              | & h/w str                 | ucture of  | the 8086  | Micropro   | ocessor ar | nd analyze | e its prop | erties.   |            |         |      | K4    |
|                | CO4 |         | ent the ba<br>ming pro |                           | tions of n | nicroproc | essors usi | ng assem   | bly progr  | amming a   | and desig | n the solu | tion of |      | K3,K5 |
|                | CO5 |         |                        | e different<br>igh serial | • •        |           | erfaced v  | vith Micro | oprocesso  | r (8085/8  | 8086) and | the data t | ransfer |      | K4,K5 |
| CO \ PO Mappi  | ing | PO1     | PO2                    | PO3                       | PO4        | PO5       | PO6        | PO7        | PO8        | PO9        | PO10      | PO11       | PO12    | PSO1 | PSO2  |
| CO1            |     | 3       | 1                      | 3                         |            |           |            |            |            |            |           |            | 1       | 1    | 1     |
| CO2 3 3 2 1    |     |         |                        |                           |            |           |            | 1          | 1          |            |           |            |         |      |       |
| CO3            |     | 3       | 3                      | 3                         |            | 2         |            |            |            |            |           |            | 1       | 1    | 1     |
| CO4            |     | 3       | 3                      | 3                         | 3          | 2         |            |            |            |            |           |            | 1       | 1    | 2     |
| CO5            |     | 3       | 3                      | 3                         | 3          | 2         |            |            |            |            |           |            | 1       | 1    | 2     |

|                         | CO1  | Underst  | and and v  | vrite simp  | ole Pythor | n program   | ıs          |            |            |            |      |      |      |      | K2    |
|-------------------------|------|----------|------------|-------------|------------|-------------|-------------|------------|------------|------------|------|------|------|------|-------|
|                         | CO2  | Develop  | Python p   | programs    | with con   | ditionals a | and loops   |            |            |            |      |      |      |      | K4,K5 |
| Python<br>Programming   | CO3  | Design   | python fu  | nctions a   | nd to use  | Python d    | ata structi | ures lis   | ts, tuples | , dictiona | ries |      |      |      | K4    |
|                         | CO4  | Perform  | input/ou   | tput with   | files in P | ython and   | l to apply  | OOPs co    | ncepts in  | python     |      |      |      |      | K4,K5 |
|                         | CO5  | To apply | y searchir | ng ,sorting | g and mer  | ging in P   | ython       |            |            |            |      |      |      |      | K3    |
| CO \ PO Mpr             | oing | PO1      | PO2        | PO3         | PO4        | PO5         | PO6         | <b>PO7</b> | PO8        | PO9        | PO10 | PO11 | PO12 | PSO1 | PSO2  |
| CO1                     |      | 3        | 1          | 2           | 1          | 3           | -           | -          | -          | -          | -    | -    | 1    | 1    | 1     |
| CO2                     |      | 3        | 2          | 2           | 2          | 3           | -           | -          | -          | -          | -    | -    | 2    | 2    | 2     |
| CO3                     |      | 3        | 3          | 2           | 2          | 3           | -           | -          | -          | -          | -    | -    | 2    | 2    | 2     |
| CO4 3 2 2 2 3 - - - - 2 |      |          |            |             |            | 2           | 2           |            |            |            |      |      |      |      |       |
| CO5                     |      | 3        | 2          | 2           | 3          | 3           | -           | -          | -          | -          | -    | -    | 2    | 2    | 2     |

#### **Practical**

|                          | CO1  | Implem | nent the b  | asic com   | nand of C   | OS and wi | ill execute | e the vario | ous syster | n calls.  |           |           |      |      |      |
|--------------------------|------|--------|-------------|------------|-------------|-----------|-------------|-------------|------------|-----------|-----------|-----------|------|------|------|
|                          | CO2  | Implen | nent the p  | rocess sy  | nchroniza   | tion prob | lem using   | g semapho   | ore.       |           |           |           |      |      |      |
| Operating<br>Systems Lab | CO3  | Implen | nent CPU    | schedulii  | ng algoritl | hm for pr | ocess sch   | eduling a   | nd deadlo  | ock manag | gement te | chniques. |      |      |      |
|                          | CO4  | Implen | nent mem    | ory mana   | gement te   | echniques | •           |             |            |           |           |           |      |      |      |
|                          | CO5  | Implen | nent file s | torage all | ocation te  | echniques | •           |             |            |           |           |           |      |      |      |
| CO \ PO Mp               | ping | PO1    | PO2         | PO3        | PO4         | PO5       | PO6         | <b>PO7</b>  | PO8        | PO9       | PO10      | PO11      | PO12 | PSO1 | PSO2 |
| CO1                      |      | 3      | 3           | 3          | 3           | 3         | 2           | 1           | 1          | 1         | 1         | 1         | 3    | 3    | 3    |
| CO2 3 3 2 3 2 2 2 1      |      |        |             |            |             |           |             | 1           | 1          | 1         | 3         | 3         | 3    |      |      |
| CO3                      |      | 3      | 3           | 3          | 3           | 3         | 1           | 1           | 1          | 1         | 1         | 1         | 3    | 3    | 3    |
| CO4                      | CO4  |        |             | 2          | 3           | 2         | 3           | 3           | 2          | 1         | 1         | 2         | 3    | 3    | 3    |
| CO5                      |      | 3      | 2           | 2          | 2           | 2         | 3           | 3           | 2          | 1         | 1         | 2         | 3    | 3    | 3    |

|                       | CO1 | Discuss  | the archi | tecture an | d instruct  | tion set of | f 8085 mi  | croproces  | sor        |           |            |           |           |      | K2   |
|-----------------------|-----|----------|-----------|------------|-------------|-------------|------------|------------|------------|-----------|------------|-----------|-----------|------|------|
|                       | CO2 | Simulate | e and imp | lment the  | e logical a | nd arithn   | netic oper | ations on  | the given  | numbers   | using 80   | 85 microj | processor |      | K3   |
| Microprocessor<br>Lab | CO3 | Simulate | e and imp | lment the  | e searchin  | g and sor   | ting on ar | n given ar | ray of ele | ments us  | sing 8085  | micropro  | cessor.   |      | K3   |
| 240                   | CO4 | Simulate | e and imp | lment the  | code cor    | version (   | ASCII to   | Hexadec    | imal and   | vice vers | a) using 8 | 085 micr  | oprocesso | or.  | K3   |
|                       | CO5 | Simulate | e and imp | olment to  | check wh    | ether the   | given nur  | nber is a  | prime us   | ing 8085  | micropro   | cessor.   |           |      | K3   |
| CO \ PO Mppin         | ng  | PO1      | PO2       | PO3        | PO4         | PO5         | PO6        | <b>PO7</b> | PO8        | PO9       | PO10       | PO11      | PO12      | PSO1 | PSO2 |
| CO1                   |     | 3        | 3         | 1          | 1           | 1           | 1          | 1          |            |           |            |           | 1         | 1    | 1    |
| CO2                   |     | 3        | 3         | 3          | 2           | 3           | 1          | 1          |            |           |            |           | 1         | 1    | 1    |
| CO3 3 3 2 2 3 1 1 1 1 |     |          |           |            |             |             |            |            | 1          | 1         | 1          |           |           |      |      |
| CO4                   |     | 3        | 3         | 2          | 2           | 3           | 1          | 1          |            |           |            |           | 1         | 1    | 1    |
| CO5                   |     | 3        | 3         | 2          | 2           | 3           | 1          | 1          |            |           |            |           | 1         | 1    | 1    |

|                           | CO1 | Underst  | and basic | syntax of  | f python i    | mplemen    | tation  |            |     |     |      |      |      |      | K2    |
|---------------------------|-----|----------|-----------|------------|---------------|------------|---------|------------|-----|-----|------|------|------|------|-------|
|                           | CO2 | Practica | lly apply | looping a  | and condition | tional con | structs |            |     |     |      |      |      |      | K3    |
| Python<br>Programming Lab | CO3 | Develop  | o program | s related  | with list o   | data struc | ture.   |            |     |     |      |      |      |      | K4,K5 |
|                           | CO4 | Design   | programs  | related to | o tuples, d   | lictionary | and set |            |     |     |      |      |      |      | K4    |
|                           | CO5 | Apply se | earching  | sorting a  | nd mergir     | ng in Pyth | ion     |            |     |     |      |      |      |      | K3    |
| CO \ PO Mppin             | ng  | PO1      | PO2       | PO3        | PO4           | PO5        | PO6     | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2  |
| CO1                       |     | 3        | 1         | 2          | 1             | 3          | -       | -          | -   | -   | -    | -    | 1    | 1    | 1     |
| CO2                       |     | 3        | 2         | 2          | 2             | 3          | -       | -          | -   | -   | -    | -    | 2    | 2    | 2     |
| CO3                       |     | 3        | 3         | 2          | 2             | 3          | -       | -          | -   | -   | -    | -    | 2    | 2    | 2     |
| CO4                       |     | 3        | 2         | 2          | 2             | 3          | -       | -          | -   | -   | -    | -    | 2    | 2    | 2     |
| CO5                       |     | 3        | 2         | 2          | 3             | 3          | -       | -          | -   | -   | -    | -    | 2    | 2    | 2     |

# CO PO and Mapping of CO PO 3rd Year (2018-2022 BATCH)

## Session:- 2020-21 Semester:- 6th

| S.No. | Subject                                    | Code   |
|-------|--------------------------------------------|--------|
| 1     | Software Engineering                       | KCS601 |
| 2     | Data Analytics                             | KIT601 |
| 3     | Computer Networks                          | KCS603 |
| 4     | Blockchain Architecture Design             | KIT061 |
| 5     | Real Time Systems                          | KOE061 |
| 6     | Constitution of India, Law and Engineering | KNC601 |
| 7     | SE Lab                                     | KCS651 |
| 8     | Data Analytics Lab                         | KIT651 |
| 9     | Computer Networks Lab                      | KCS653 |

## **<u>Theory</u>**

|                         | CO1  | Explain | various s                 | oftware c   | haracteris | stics and a | analyze d  | ifferent s | oftware D  | evelopm    | ent Mode    | ls          |            |         | K1,K2 |
|-------------------------|------|---------|---------------------------|-------------|------------|-------------|------------|------------|------------|------------|-------------|-------------|------------|---------|-------|
|                         | CO2  |         | strate the oment meet     |             |            |             |            | ftware qu  | ality assu | rance pra  | ctices to e | ensure that | at design, |         | K1,K2 |
| Software<br>Engineering | CO3  | Compar  | e and con                 | ıtrast vari | ous meth   | ods for so  | oftware de | esign.     |            |            |             |             |            |         | K2,K3 |
| Engineering             | CO4  |         | ate testing<br>al testing |             | for softw  | are syster  | ns, emplo  | by technic | ques such  | as unit te | esting, Tes | st driven   | developm   | ent and | K3    |
|                         | CO5  |         | software<br>ment tool     |             |            |             |            |            | s in teams | and mak    | e use of V  | Various so  | oftware    |         | K5    |
| CO \ PO Mp              | ping | PO1     | PO2                       | PO3         | PO4        | PO5         | PO6        | PO7        | PO8        | PO9        | PO10        | PO11        | PO12       | PSO1    | PSO2  |
| CO1                     |      | 3       | 3                         | 3           | 2          | 3           | 2          | 2          | 1          | 1          |             | 1           | 3          | 3       | 3     |
| CO2                     |      | 3       | 3                         | 3           | 3          | 3           | 2          | 2          |            | 1          |             | 1           | 3          | 3       | 3     |
| CO3                     |      | 3       | 3                         | 3           | 3          | 3           | 2          | 2          |            | 1          |             | 1           | 2          | 3       | 3     |
| CO4                     |      | 3       | 3                         | 3           | 3          | 3           | 2          | 2          |            | 1          |             | 1           | 1          | 3       | 3     |
| CO5                     |      | 3       | 3                         | 3           | 3          | 3           | 2          | 2          |            | 1          |             | 1           | 1          | 3       | 3     |

|                     | CO1   | Discuss  | various c   | oncepts o  | of data and | alytics pi  | peline    |            |            |            |            |       |      |      | K1,<br>K2 |
|---------------------|-------|----------|-------------|------------|-------------|-------------|-----------|------------|------------|------------|------------|-------|------|------|-----------|
|                     | CO2   | Apply c  | lassificati | on and re  | gression    | technique   | ès.       |            |            |            |            |       |      |      | К3        |
| Data<br>Analytics   | CO3   | Explain  | and apply   | y mining   | technique   | es on strea | aming dat | a.         |            |            |            |       |      |      | K2,K3     |
|                     | CO4   | Compar   | e differen  | t clusteri | ng and fre  | equent pa   | ttern min | ing algori | thms       |            |            |       |      |      | K4        |
|                     | CO5   | Describe | e the cond  | cept of Py | thon prog   | gramming    | g and imp | lement an  | alytics or | n Big data | a using py | thon. |      |      | K2,K3     |
| CO \ PO MJ          | pping | PO1      | PO2         | PO3        | PO4         | PO5         | PO6       | PO7        | PO8        | PO9        | PO10       | PO11  | PO12 | PSO1 | PSO2      |
| CO1                 |       | 3        | 3           | 3          | 3           | 3           | 2         |            |            |            |            | 2     | 3    | 3    | 3         |
| CO2                 |       | 3        | 3           | 3          | 3           | 3           | 2         |            |            |            |            | 1     | 1    | 2    | 2         |
| CO3                 |       | 3        | 3           | 3          | 3           | 3           | 2         |            |            |            |            | 1     | 1    | 3    | 3         |
| CO4                 |       | 3        | 3           | 3          | 3           | 3           | 2         |            |            |            |            | 1     | 1    | 2    | 2         |
| CO5 3 3 3 3 2 1 3 3 |       |          |             |            |             |             |           |            |            | 3          |            |       |      |      |           |

|                      | CO1   | Build an         | n understa               | unding of | the funda   | amental co | oncepts a  | nd Layere   | ed Archite | ecture of  | computer     | networki    | ng.         |        | K1,K2         |
|----------------------|-------|------------------|--------------------------|-----------|-------------|------------|------------|-------------|------------|------------|--------------|-------------|-------------|--------|---------------|
|                      | CO2   | Underst flow con |                          | asic conc | epts of lir | ık layer p | roperties  | to detect   | error and  | develop    | the solution | on for erre | or control  | and    | K2, K3        |
| Computer<br>Networks | CO3   | 0.               | calculate<br>outers in   |           | ly subnet   | masks an   | d address  | ses to fulf | ill networ | king requ  | uirements    | and calcu   | ılate dista | ince   | K3,K4,<br>K5  |
|                      | CO4   |                  | anding th                |           |             |            |            | ver and pr  | resentatio | n layer ar | nd also fo   | cus on ne   | twork sec   | curity | K2,<br>K3, K4 |
|                      | CO5   |                  | and the fe<br>ls and oth |           |             | ons of va  | rious appl | lication la | iyer proto | cols such  | as DNS,      | HTTP, F     | TP, e-ma    | il     | K1,K2         |
| CO \ PO MJ           | pping | PO1              | PO2                      | PO3       | PO4         | PO5        | PO6        | PO7         | PO8        | PO9        | PO10         | PO11        | PO12        | PSO1   | PSO2          |
| CO1                  |       | 3                | 3                        | 3         | 3           | 3          | 3          | 3           | 3          | 3          | 3            | 3           | 3           | 3      | 3             |
| CO2                  |       | 3                | 3                        | 3         | 3           | 3          | 3          | 3           | 3          | 3          | 3            | 3           | 2           | 3      | 3             |
| CO3                  |       | 3                | 3                        | 3         | 2           | 3          | 3          | 3           | 3          | 3          | 3            | 3           | 2           | 3      | 3             |
| CO4                  |       | 3                | 2                        | 2         | 2           | 3          | 2          | 3           | 3          | 3          | 3            | 3           | 2           | 3      | 3             |
| CO5                  |       | 3                | 2                        | 2         | 3           | 3          | 2          | 2           | 2          | 3          | 2            | 3           | 2           | 3      | 3             |

|                             | CO1  | Describ | e the basi | c underst  | anding of  | f Blockch   | ain archi  | tecture al | ong with   | its primit | ive. |      |      |      | K1,K2        |
|-----------------------------|------|---------|------------|------------|------------|-------------|------------|------------|------------|------------|------|------|------|------|--------------|
|                             | CO2  | Explain | the requi  | rements f  | for basic  | protocol a  | along wit  | h scalabil | ity aspect | ts         |      |      |      |      | K2, K3       |
| Blockchain<br>Architecture  | CO3  | Design  | and deplo  | by the cor | isensus p  | rocess usi  | ing fronte | end and b  | ackend     |            |      |      |      |      | K2,K3        |
| Design                      | CO4  | Apply B | Blockchai  | n techniq  | ues for di | ifferent us | se cases l | ike Finan  | ce and Ti  | rade/Supp  | oly  |      |      |      | K3,K4,<br>K5 |
|                             | CO5  | .Apply  | Blockcha   | in technic | ques for d | lifferent u | ise cases  | of Govern  | nment act  | ivities    |      |      |      |      | K3,<br>K4,K5 |
| CO \ PO Mp                  | ping | PO1     | PO2        | PO3        | PO4        | PO5         | PO6        | PO7        | PO8        | PO9        | PO10 | PO11 | PO12 | PSO1 | PSO2         |
| CO1                         |      | 3       | 3          | 1          | 2          | 1           | 3          | 3          | 2          | 2          | 1    | 2    | 2    | 2    | 2            |
| CO2                         |      | 3       | 3          | 2          | 3          | 3           | 2          | 2          | 2          | 2          | 1    | 2    | 3    | 2    | 2            |
| CO3                         |      | 3       | 2          | 3          | 3          | 3           | 2          | 3          | 2          | 2          | 2    | 3    | 2    | 3    | 3            |
| CO4                         |      | 3       | 3          | 3          | 3          | 3           | 1          | 3          | 2          | 2          | 1    | 2    | 2    | 3    | 3            |
| CO5 3 3 3 3 1 3 2 2 1 2 2 3 |      |         |            |            |            |             | 3          |            |            |            |      |      |      |      |              |

|                      | CO1                       | Describ  | e concept   | s of Real- | Time sys   | stems and   | modeling    | g.        |             |           |            |           |      |      | K1,K2 |
|----------------------|---------------------------|----------|-------------|------------|------------|-------------|-------------|-----------|-------------|-----------|------------|-----------|------|------|-------|
|                      | CO2                       | Recogni  | ze, and a   | pply the c | characteri | stics of a  | real-time   | system in | n context   | with real | time sche  | duling.   |      |      | K2,K3 |
| Real Time<br>Systems | CO3                       | Classify | and anal    | yze vario  | us resour  | ce sharing  | g mechani   | sms and   | their relat | ed protoc | ols.       |           |      |      | K2,K4 |
| ~                    | CO4                       | Interpre | t the basic | cs of real | time com   | municati    | on by the   | knowled   | ge of real  | time mod  | lels and p | rotocols. |      |      | K3,K5 |
|                      | CO5                       | Apply th | ne basics   | of RTOS    | in interp  | retation of | f real time | e systems |             |           |            |           |      |      | K3,K5 |
| CO \ PO MI           | oping                     | PO1      | PO2         | PO3        | PO4        | PO5         | PO6         | PO7       | PO8         | PO9       | PO10       | PO11      | PO12 | PSO1 | PSO2  |
| CO1                  |                           | 3        | 3           | 2          | 2          | 2           | 2           |           |             | 2         | 2          | 2         | 3    | 3    | 3     |
| CO2                  |                           | 3        | 3           | 3          | 3          | 3           | 3           |           |             | 2         | 2          | 1         | 3    | 3    | 3     |
| CO3                  |                           | 3        | 3           | 3          | 3          | 3           | 3           | 2         |             | 2         | 2          | 2         | 3    | 3    | 3     |
| CO4                  |                           | 3        | 3           | 3          | 3          | 3           | 3           | 2         | 2           | 2         | 2          | 1         | 3    | 3    | 3     |
| CO5                  | CO5 3 3 3 3 3 2 2 2 1 3 3 |          |             |            |            |             |             |           |             |           |            | 3         |      |      |       |

|                        | CO1  | Identify | and exp     | lore the b  | asic featu | ires and n | nodalities  | about In    | dian cons  | stitution. |            |            |      |      | K1,K2        |
|------------------------|------|----------|-------------|-------------|------------|------------|-------------|-------------|------------|------------|------------|------------|------|------|--------------|
| Constitution           | CO2  | Differe  | ntiate and  | l relate th | e function | ning of In | idian parl  | iamentary   | y system : | at the cen | ter and st | ate level. |      |      | K2,K3        |
| of India,              | CO3  | Demon    | strate diff | ferent asp  | ects of Ir | idian Leg  | al System   | n and its r | elated bo  | dies.      |            |            |      |      | K2,K3        |
| Law and<br>Engineering | CO4  | Discove  | er and ap   | oly differ  | ent laws a | and regul  | ations rela | ated to en  | ngineering | g practice | s.         |            |      |      | K1,K2,<br>K3 |
|                        | CO5  | Interpre | et and eva  | luate the   | role of e  | ngineers v | with diffe  | rent orga   | nizations  | and gove   | rnance m   | odels      |      |      | K2, K5       |
| CO \ PO Mp             | ping | PO1      | PO2         | PO3         | PO4        | PO5        | PO6         | PO7         | PO8        | PO9        | PO10       | PO11       | PO12 | PSO1 | PSO2         |
| CO1                    |      | 1        | 1           | 1           | 1          | 1          | 2           | 2           | 2          | 1          | 1          | 1          | 1    | 1    | 1            |
| CO2                    |      | 1        | 1           | 1           | 1          | 2          | 2           | 2           | 1          | 2          | 1          | 1          | 2    | 2    | 1            |
| CO3                    |      | 1        | 1           | 1           | 2          | 1          | 1           | 2           | 1          | 2          | 1          | 1          | 2    | 1    | 1            |
| CO4                    | CO4  |          |             | 1           | 3          | 2          | 2           | 2           | 2          | 1          | 1          | 1          | 2    | 2    | 1            |
| CO5                    |      | 1        | 1           | 1           | 3          | 2          | 2           | 2           | 2          | 2          | 1          | 1          | 2    | 2    | 1            |

#### **Practical**

|                      | CO1   | Underst              | and the fu              | undament                | al concep               | ts of com          | puter net | working a    | and Netw  | ork topol   | ogies.     |           |            |      | K1,K2         |
|----------------------|-------|----------------------|-------------------------|-------------------------|-------------------------|--------------------|-----------|--------------|-----------|-------------|------------|-----------|------------|------|---------------|
|                      | CO2   | Know a               | bout diffe              | erent type              | s of netw               | ork devic          | es and de | sign, imp    | lement, a | nd analyz   | ze simple  | computer  | networks   | s.   | K3, K4        |
| Computer<br>Networks | CO3   |                      | e basic n<br>ring pract |                         | ommands                 | and use t          | echnique  | s, skills, a | and mode  | rn netwoi   | king tool  | s necessa | ry for     |      | K3,K4,<br>K5  |
| Lab                  | CO4   | Formula              | ate proble              | ms and th               | neir soluti             | ons, think         | creative  | ly and co    | mmunica   | te effectiv | vely.      |           |            |      | K4,<br>K5, K6 |
|                      | CO5   | Describe<br>personal | e how rap<br>l knowlec  | oid progre<br>lge and u | ess of com<br>nderstand | nputer net<br>ing. | work tech | nnology c    | an impac  | t on the s  | ociety and | d continu | e to advar | nce  | K3, K4        |
| CO \ PO M            | pping | PO1                  | PO2                     | PO3                     | PO4                     | PO5                | PO6       | PO7          | PO8       | PO9         | PO10       | PO11      | PO12       | PSO1 | PSO2          |
| CO1                  |       | 3                    | 2                       | 1                       | 2                       | 1                  | 3         | 3            | 2         | 3           | 3          | 3         | 1          | 3    | 3             |
| CO2                  |       | 3                    | 2                       | 3                       | 2                       | 1                  | 2         | 3            | 2         | 2           | 2          | 3         | 3          | 3    | 3             |
| CO3                  |       | 3                    | 2                       | 3                       | 1                       | 3                  | 1         | 2            | 3         | 2           | 2          | 2         | 3          | 3    | 3             |
| CO4                  |       | 2                    | 1                       | 3                       | 2                       | 3                  | 1         | 2            | 2         | 3           | 3          | 2         | 2          | 3    | 3             |
| CO5                  |       | 3                    | 1                       | 2                       | 2                       | 2                  | 3         | 2            | 2         | 3           | 2          | 2         | 2          | 3    | 3             |

|            | CO1   |         | ambiguit<br>ctional re   |            |             | s and inco | ompletene                 | ess from a  | requirem  | nents spec | rification | and state | functiona | l and | K2,K4 |
|------------|-------|---------|--------------------------|------------|-------------|------------|---------------------------|-------------|-----------|------------|------------|-----------|-----------|-------|-------|
|            | CO2   |         | different<br>ith differe |            |             |            | given pro                 | blem sta    | tement an | d draw u   | se case di | agram to  | associate | use   | K3,K5 |
| SE Lab     | CO3   | Draw a  | class diag               | gram after | · identifyi | ng classe  | s and asso                | ociation a  | mong the  | m          |            |           |           |       | K4,K5 |
|            | CO4   |         |                          |            |             |            | s , and ass<br>ent them p |             | among th  | nem and i  | dentify th | e logical | sequence  | of    | K4,K5 |
|            | CO5   | Able to | use mode                 | rn engine  | ering too   | ls for spe | cification                | , design, i | implemen  | itation an | d testing  |           |           |       | K3,K4 |
| CO \ PO MJ | pping | PO1     | PO2                      | PO3        | PO4         | PO5        | PO6                       | PO7         | PO8       | PO9        | PO10       | PO11      | PO12      | PSO1  | PSO2  |
| CO1        |       | 3       | 3                        | 3          | 2           | 3          | 2                         | 2           | 1         | 1          |            | 1         | 3         | 3     | 3     |
| CO2        |       | 3       | 3                        | 3          | 3           | 3          | 2                         | 2           |           | 1          |            | 1         | 3         | 3     | 3     |
| CO3        |       | 3       | 3                        | 3          | 3           | 3          | 2                         | 2           |           | 1          |            | 1         | 2         | 3     | 3     |
| CO4        |       | 3       | 3                        | 3          | 3           | 3          | 2                         | 2           |           | 1          |            | 1         | 1         | 3     | 3     |
| CO5        |       | 3       | 3                        | 3          | 3           | 3          | 2                         | 2           |           | 1          |            | 1         | 1         | 3     | 3     |

|            | CO1                                                                                                                                                                                                                     | Implem  | ent nume   | rical and  | statistical | analysis   | on variou   | s data sou | urces.     |           |      |      |      |      | K2,K4 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|------------|-------------|------------|-------------|------------|------------|-----------|------|------|------|------|-------|
| Data       | CO2                                                                                                                                                                                                                     | Apply d | ata prepro | ocessing a | and dime    | nsionality | reduction   | n methods  | s on raw o | lata.     |      |      |      |      | K3,K5 |
| Analytics  | CO3                                                                                                                                                                                                                     | Implem  | ent linear | regressio  | n techniq   | ue on nui  | meric data  | a for pred | iction.    |           |      |      |      |      | K3,K4 |
| Lab        | CO4                                                                                                                                                                                                                     | Execute | clusterin  | g and ass  | ociation r  | ule minin  | ig algorith | nms on di  | fferent da | itasets   |      |      |      |      | K4,K5 |
|            | CO5                                                                                                                                                                                                                     | Implem  | ent and ev | valuate th | e perform   | nance of H | KNN algo    | rithm on   | different  | datasets. |      |      |      |      | K3,K4 |
| CO \ PO MJ | oping                                                                                                                                                                                                                   | PO1     | PO2        | PO3        | PO4         | PO5        | PO6         | PO7        | PO8        | PO9       | PO10 | PO11 | PO12 | PSO1 | PSO2  |
| CO1        |                                                                                                                                                                                                                         | 3       | 3          | 3          | 3           | 3          | 2           |            |            |           |      | 2    | 3    | 3    | 3     |
| CO2        |                                                                                                                                                                                                                         | 3       | 3          | 3          | 3           | 3          | 2           |            |            |           |      | 1    | 1    | 2    | 2     |
| CO3        |                                                                                                                                                                                                                         | 3       | 3          | 3          | 3           | 3          | 2           |            |            |           |      | 1    | 1    | 3    | 3     |
| CO4        | CO4                                                                                                                                                                                                                     |         | 3          | 3          | 3           | 3          | 2           |            |            |           |      | 1    | 1    | 2    | 2     |
| CO5        | CO5 3 3 3 3 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |         |            |            |             |            |             |            |            |           |      | 3    |      |      |       |