

KIET GROUP OF INSTITUTIONS, GHAZIABAD

Department of Computer Science & Information Technology

Department of Computer Science & Information Technology

Index

		3 rd Semester
S No.	Subject Code	Subject Name
1	KAS-302	Maths IV
2	KCS-301	Data Structure
3	KCS-302	Computer Organization and Architecture
4	KCS-303	Discrete Structures & Theory of Logic
5	KNC-301	Computer System Security
6	KCS-351	Data Structures Using C Lab
7	KCS-352	Computer Organization Lab
8	KCS-353	Discrete Structure & Logic Lab

		5 th Semester
S No.	Subject Code	Subject Name
1	KCS 055	Machine Learning Techniques
2	KNC 502	Indian Tradition, Culture and Society
3	KCS 501	Database Management Systems
4	KCS 503	Design And Analysis Of Algorithm
5	KCS 054	Object Oriented System Design
6	KIT 501	Web Technologies
7	KCS 551	Database Management Systems Lab
8	KCS 553	Design and Analysis of Algorithm Lab
9	KIT 551	Web Technologies Lab

13 KM STONE, GHAZIABAD-MEERUT ROAD, GHAZIABAD – 201206 Website: www.kiet.edu

		7 th Semester
S No.	Subject Code	Subject Name
1	KCS 071	Artificial Intelligence
2	KCS 713	Cloud Computing
3	KHU 701	PME

CO PO and Mapping of CO PO 2nd Year

(2020-2024 BATCH)

Session:- 2021-22 Semester:- 3rd

S.No.	Subject	Code
1	Math-IV	KAS 302
2	Data Structure	KCS 301
3	Computer Organization and Architecture	KCS 302
4	Discrete Structures & Theory of Logic	KCS 303
5	Computer System Security	KNC 301
6	Data Structures Using C Lab	KCS351
7	Computer Organization Lab	KCS352
8	Discrete Structure & Logic Lab	KCS353

Theory

	CO1	Study t	he metho	ods to sol	ve Parti	ial Differ	ential Ec	quations							K3
	CO2	Apply	the conc	ept of se	paration	of variab	les to sol	lve wave	, heat ,	Laplace	and trans	smission	equation	s.	K3
Mathematics -IV	CO3	Evaluat	te Mome	nts, M.C	G.F, Corr	elations,	linear r	egression	1.						K4
(KAS 302)	CO4	Apply t	he conce	ept of pro	bability	to solve	discrete	and cont	inuous p	robabilit	y distribu	tions.			K3
	CO5	Apply t (ANOV	the conce /A).	pt of sa	mpling to	o study	t-test, F-1	test and (Chi-squa	re test, C	ne way A	Analysis	of Varian	ice	К3
CO \ PO Mar	oping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		3	3										2		
CO2		3	3	2									2		
CO3		3	3	2	3	2							2		
CO4		3	3	1	1	1							1		
CO5		3	3	2	3	3	2	2					2		

	CO1	Apply th	he knowle	edge of va	rious data	a structure	es and its	operation	s					K3
	CO2	Apply s	tandard al	lgorithms	for searcl	ning and s	sorting							K3
Data Structures	CO3	Analyze	e efficienc	y of diffe	rent algor	ithms usi	ng time a	nd space	complexit	ty				K4
(KCS 301)	CO4	Explore	the conce	ept, applic	cation and	impleme	ntation of	f recursion	n					K4
	CO5	Implem	ent the su	itable dat	a structure	e with res	pect to its	performa	ance to me	odel a rea	l world pr	oblem		K6
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1		3		2	2	2							3	
CO2		2	2	2	1							1	1	
CO3		3	2	2	3							1	2	
CO4		3		2	3	2		1	1			1	1	
CO5		3	2	2	1								2	

	CO1	Underst	and and d	lescribe th	ne basic of	rganizatio	on and ope	eration of	the comp	onents of	a digital	computer	system.		K2
Computer	CO2	Illustrate	e various a	arithmetic	and logica	al operatio	ons on diff	erent type	s of numb	ers to des	ign an arit	hmetic and	d logic uni	t.	К3
and	CO3	Analyze	the perfor	rmance iss	sues of the	processo	r and class	sify the co	ntrol unit	implemen	tation tech	miques.			K4
Architecture (KCS 302)	CO4	Categori	ze the hie	rarchical r	nemory sy	ystem and	examine	the virtual	memory i	mplemen	tation tech	niques.			K4
	CO5	Compare standard	are the different I/O data transfer techniques, and describe the different ways of communication among I/O devices and rd I/O interfaces K5												
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		3	3	2	1	2	1	1	1	1		1	1		
CO2		3	3	3	1	3	1			1		1	1		
CO3		2	2	2	1	3	1			1		1	1		
CO4		2	2	2	1	1	1			1		1	1		
CO5		2	2	2	1	1	1			1		1	1		

	CO1	Write	an argu	ment us	sing log	ical not	ation ar	nd deter	mine if	the arg	ument is	s or is n	ot valid.	K4
Discrete	CO2	Under	stand th	ne basic	princip	les of se	ets and	operatio	ons in se	ets.				K2
and Theory of Logic	CO3	Demor proper	nstrate : ties	an unde	rstandir	ng of rel	lations a	and fund	ctions a	nd be a	ble to de	etermin	e their	К3
(KCS-303)	CO4	Demo	nstrate	differen	t traver	sal metł	nods for	trees a	nd grap	hs.				K4
	CO5	Model	proble	ms in co	omputer	r scienc	e using	graphs	and tree	es.				K6
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1		3	3	2	1	2						2	1	
CO2		3	3	2	1	2						2	1	
CO3		3	3	3	3	2						2	1	
CO4		3	3	3	3	2	1	1				2	1	
CO5		3	3	2	2	2						2	1	

		CO1	To disco	over softw	vare bugs	that pose	cyber sec	urity thre	ats and to	explain h	ow to fix	the bugs	to mitigat	e such thr	eats	K2
		CO2	To disco	over cyber	r attack so	cenarios to	web bro	wsers and	l web serv	vers and to	explain l	how to mi	tigate suc	h threats		K2
Compu Syster Securi	iter m ity	CO3	To disco mitigatio	over and e	explain mo ques.	obile softv	ware bugs	s posing c	yber secu	rity threat	s, explain	and recre	ate explo	its, and to	explain	К3
(KNC-3	301)	CO4	To artic explain	ulate the u various th	irgent nee ireat scena	ed for cyb arios	er securit	y in critic	al comput	er system	s, networ	ks, and w	orld wide	web, and	to	K4
		CO5	To artic	ulate the v	well know	n cyber a	ttack inci	dents, exp	lain the a	ttack scer	narios, and	d explain	mitigatior	n techniqu	es.	K6
CO\PC	O Maj	oping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
(CO1		3	1	3	2	2	2	2	3	3	2	1	3		
(CO2		2	3	1	3	3	2	1	3	2	2	1	3		
(CO3		2	2	3	2	3	2	1	3	1	3	1	3		
(CO4		3	2	3	3	2	3	1	3	3	2	1	3		
(CO5		3	2	2	3	3	1	2	3	3	2	1	3		

Practical

	CO1	Studer	nts will b	e able to	Interpret	t and con	npute asy	mptotic	notations	s of an al	gorithm t	o analyz	e the		K4
		consur	nption of	t resourc	es (time/	space).									
Data	CO2	Studer memo	nts will b ry using	e able to static and	Exempli d dynami	fy and in c allocat	nplementions.	t stack, q	ueue and	list AD	Γ, tree, aı	nd graph	to manag	ge the	K3
Using C	CO3	Studer	nts will b	e able to	Impleme	ent binar	y search	tree to de	sign app	lications	like exp	ression tr	ees.		K3
Lab (KCS 351)	CO4	Studer and M	nts will b ST using	e able to ggraph tł	Identify, neory.	model,	solve and	l develop	code for	r real life	problem	is like sh	ortest pat	h	K6
	CO5	Studer Algori	nts will b thms.	e able to	Develop	and con	npare the	compari	son-base	d search	algorithr	ns and so	orting		K3
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		2	3	3	2	1	1	1	1	1	1	1	3		
CO2		2	3	3	2	1	1	1	1	1	1	1	3		
CO3		3	2	3	2	1	1	1	1	1	1	1	2		
CO4		3	2	3	2	1	1	1	1	1	1	1	3		
CO5		2	3	3	2	1	1	1	1	1	1	1	2		

	CO1	Examine	e the outp	out of the	basic logi	c gates fo	r differen	t combina	tions of i	nput.					K3
Computer	CO2	Design a code con	and simul nverter	ate the co	mbination	nal circuit	s for bina	ry arithm	etic (sucl	h as adder	rs, subtrac	tors, and	multiplier	r) and	K6
Organization Lab (KCS 352)	CO3	Design a using log	and simul gic gates	ate combi	inational	circuits fo	r encoder	s/decoder	s and sele	ection dev	vices mult	iplexers/d	le-multipl	exers	K6
(1105 002)	CO4	Design a	and simul	ate the ba	sic buildi	ng block	of the seq	uential ci	rcuits (i.e	. SR and	D Flip Flo	ops) using	logic gat	es.	K6
	CO5	Design a	and simul	ate the 2-	bit Arithn	netic Logi	ic Unit us	ing logic	gates.						K6
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	2	2	1	3	2			1		1	1	3	3
CO2		3	2	3	1	3	2			1		1	1	3	3
CO3		2	2	3	1	3	1			1		1	1	3	3
CO4		2	2	3	1	2	1			1		1	1	3	3

CO5 2	2 2	3 1	2 1	1	1 1	3 3
-------	-----	-----	-----	---	-----	-----

Discrete CC Structure and Logic CC Lab (KCS-		To Impl	ement va	rious Set o	operations	5.									K2,K3
Discrete	CO2	To Dem	onstrate	various ba	sic Maple	e comman	ıds.								K ₁ ,K ₂
and Logic	CO3	To Impl	ement va	rious Indu	ictive tech	nniques, R	Recursive	Techniqu	es and exp	pected va	lue proble	ms using	Maple sci	ript.	K ₃ ,K ₄
Lab (KCS- 353)	CO4	To Desi	gn and In	nplement	practical a	applicatio	ns based o	on graphs	and short	est paths.					K5
	CO5	To Impl	ement va	rious prog	gramming	problems	s based or	binary se	earch.						K3, K4
CO \ PO Maj	pping	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1		3	3	2	1	2						2	1		
CO2		3	3	2	1	2						2	1		
CO3	CO3 3 3 3 2 2 1														
CO4		3	3	3	3	2	1	1				2	1]	
CO5		3	3	2	2	2						2	1		

CO PO and Mapping of CO PO 3rd Year

(2019-2023 BATCH)

Session:- 2021-22 Semester:- 5th

S.No.	Subject	Code
1	Machine Learning Techniques	KCS 055
2	Database Management System	KCS 501
3	Design and Analysis of Algorithm	KCS 503
4	Web Technology	KIT 501
5	Object Oriented System Design	KCS 054
7	Database Management System Lab	KCS 551

Theory

	CO1	To unde	erstand the	e need for	machine	learning f	for variou	s problem	solving					ŀ	Χ2
Machine	CO2	To unde	erstand a v	vide varie	ty of lear	ning algoi	rithms and	d how to e	evaluate n	nodels ge	nerated fro	om data		F	Χ3
Learning Techniques	CO3	To unde	erstand the	e latest tre	ends in ma	achine lea	rning.							F	Χ3
(KCS 055)	CO4	To desig	gn approp	riate mac	hine learn	ing algori	ithms and	apply the	e algorithr	ns to a re	al-world p	roblems.		ŀ	Χ6
	CO5	To optir	nize the n	nodels lea	rned and	report on	the expec	ted accur	acy that c	an be ach	ieved by a	applying t	he models	;. F	Χ5
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		3	3	3	1					1			2		
CO2		3	3	3	1					1			1		
CO3		3	3	3	1		1			1			2		
CO4		3	3	3	1					1			2		
CO5		3	3	3	2					1			1		

ColDatabaseManagementSystems(KCS 501)	CO1	Apply	knowled	ge of data	abase for	real life a	pplicatio	ns						:	,K3
Databasa	CO2	Apply	query pro	ocessing	technique	es to autor	mate the	real time	problems	of datab	ases.				K4
Management Systems	CO3	Identif	y and sol	ve the red	dundancy	y problem	in databa	ase tables	using no	rmalizati	on.				K4
(KCS 501)	(KCS 501) CO4 Understand the concepts of transactions, their processing so they will familiar with broad range of database management issues including data integrity, security and recovery. K3 CO4 Design, develop and implement a small database project using database tools. K3														K3
CO5 Design, develop and implement a small database project using database tools. I													K6		
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		3	3	-	-	2	-	-	2	2	-	3	2		
CO2		3	3	2	2	3	-	-	1	2	2	3	2		
CO3		3	3	3	3	2	1	-	1	2	1	2	2	I	
CO4		3	2	3	3	2	2	2	1	2	2	2	2		
CO5		3	2	2	2	3	2	2	1	2	1	3	2	ı.	

	CO1	Under divide	stand b -andcor	asic tec nquer,gi	hnique: reedy, c	s for de lynamic	signing c, and b	algorith acktrac	nms, inc king.	luding	the tech	iniques	of recu	rsion,	K ₃
Design and	CO2	Analys	e the e	fficiency	y of alg	orithms	using t	ime and	space	comple	exity				K ₄
Analysis of Algorithm	CO3	Find a proble	n algori m corre	thm to a ectly (va	solve th alidate).	ie probl	em (cre	eate) an	d prove	that th	ne algori	ithm so	lves the		K5
(KCS 503)	CO4	Apply	ply algorithms in complex and real world problems K4 unine and formulate the basic techniques for designing algorithms and applying the techniques of recursion, divide-												
CO5 Examine and formulate the basic techniques for designing algorithms and applying the techniques of recursion, divide- and-conquer, dynamic programming and greedy.												K6			
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		3	3	2											
CO2		2	2	3	3	1				2			3]	
CO3		2	2	3	3	2				2			2		
CO4		2	2	3	3	2				2			3		
CO5		3	3	3	3	3	1	1				1	3		

CCWebTechnology(KIT 501)	CO1	Create unders	java pro tanding	ogram u web ap	sing kno plication	owledge develop	of the ir oment	nternet a	and relat	ed inter	net conc	epts that	at are vit	al in	K6
	CO2	Create	web pa	ge usinę	g mark ι	ıp langu	ages lik	e HTML	, DHTM	L, and X	(ML in th	ne worki	ngs of th	ne web	K4
Web Technology (KIT 501)	CO3	Explair enviror	n web ap nments o	oplicatio currently	n develo / availab	opment sole on the	software e marke	tools i. t to des	e. XML, ign webs	Apache sites.	Tomcat	etc. an	d identifi	es the	K6
(111 301)	CO4 Create dynamic web pages using client side programming JavaScript and also the web application using servlet and JSP. K4													K4	
	CO5Design web page by database connectivity with JDBC in the current market place where everyone use to prefer electronic medium for shopping, commerce, fund transfer and even social life alsoK6														K6
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		2		2	2	3						2			
CO2		2	2	2	1							1	1		
CO3		2		2	2							1	2		
CO4				2		2	1	1	1			1	1		
CO5		3	2	2	1								2		

	CO1	Under progra	stand th mming.	e applic	cation de	evelopn	nent and	l ana-lyz	ze the ir	sights o	of object	oriente	d	K_4
Object Oriented	CO2	Analyz	ze and a	pply the	e role of	overall	l modeli	ng conc	epts (i.e	e. Syster	m, struc	tural)		K4
System Design	CO3	Analyz	ze and a	pply oo	ps conc	epts (i.e	e. abstra	ction, ir	heritan	ce)				K4
(KCS 054)	CO4	Under	stand th	e basic	concept	s of C+	+ to imp	ole-men	t the ob	ject orie	ented co	ncepts		К3
	CO5	Apply o	object of	riented	approac	h to im	plement	real wo	orld prol	olem.				K6
CO\PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	I
CO1				3	1	2				1	3	1		
CO2			3	3	2	2						2		
CO3			3	3	2	2						2		
CO4				3		3								
CO5						3	3	2	2	3	3	3	3	

Practical

	CO1	Under object	stand and s.	d apply o	oracle 11	g produc	ets for cre	eating tal	oles, viev	ws, index	kes, seque	ences and	l other da	tabase	K ₃
	CO2	Design system	n and im 1, payrol	plement l process	a databas	se schem em, stude	a for cor ent inform	npany da nation sy	ata base, /stem.	banking	database	, library	informati	on	K ₆
DBMS (KCS 551)	CO3	Write	and exec	cute simp	ole and co	omplex c	queries us	sing DD	L, DML,	DCL an	d TCL.				K ₃
	CO4	Write	rite and execute PL/SQL blocks, procedure functions, packages and triggers, cursors. K6 force entity integrity, referential integrity, key constraints, and domain constraints on database. K6												
	CO5 Enforce entity integrity, referential integrity, key constraints, and domain constraints on database. K														K6
CO\PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		3	3	3		2						1	2		
CO2		3	3	3	3	2	1			1	1	2	2		
CO3		3	3	3	2	2							2		
CO4		3	3	3	3	2						2	2		
CO5		3	3	3	3	2						1	2		

CO PO and Mapping of CO PO 4th Year

(2018-2022 BATCH)

Session:- 2021-22 Semester:- 7th

S.No.	Subject	Code
1	Artificial Intelligence	KCS 071
2	Cloud Computing	KCS 713
3	РМЕ	KHU 701

CO CO AI (KCS 071)	CO1	Unders	tand the	concept	of artific	ial intelli	igence ar	nd intelli	gent agei	nts.				K ₃₂	
	CO2	Apply I	basic prin	nciples o	f AI in s	olutions	that requ	ire probl	em solvi	ng meth	ods.			K ₃	
AI (KCS 071)	CO3	Determ	ine the e	effectiver	ness of tr	uths by k	mowledg	ge repres	entation	methods	in AI.			K ₅	
CO4 Abstract intelligent agents by exploring the architecture and communication of agents. Analyze various AL applications in Information retrieval and extraction. Natural Language Possessing													K2		
CO5 Analyze various AI applications in Information retrieval and extraction, Natural Language Possessing, speech recognition and Robots.														У K4	
CO\PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		3					3	2	2				3		
CO2		3	3	2	2	3				2			3		
CO3		3	3	2	3	3				2			3		
CO4		3	3	3	3	3			2	2		2	3		
CO5		3	3	2	3	3	3	2	2				3		

Cloud Computing (KCS 713)	CO1	Describ	e architec	ture and u	underlyin	g principl	es of clou	id compu	ting.						K ₃
Cloud	CO2	Explain	need, typ	es and to	ols of Vir	tualizatio	n for clou	ıd.							K4
Computing	CO3	Describ	e Service	s Orienteo	d Archited	cture and	various ty	pes of cl	oud servio	ces.					K ₃
(KCS 713)	CO4	Explain standard	Inter clou ls for clou	ud resourd ud compu	ces manaş ting.	gement cl	oud stora	ge service	es and the	ir provide	ers Assess	security	services a	nd	K4
	CO5	Analyze	advance	d cloud te	echnologi	es.									K6
CO \ PO Maj	pping	PO1	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1		3	3	1	1	2	2	2	1	2	2	3	3		
CO2		3	3	3	2	2	2	2	1	2	2	3	3		
CO3		3	3	2	2	2	2	2	1	2	2	3	3		
CO4		3	3	2	2	3	3	2	1	2	2	3	3		
CO5		3	3	3	3	3	2	2	1	2	2	3	3		

	CO1	Unde	rstand the	e theories	ofentre	oreneursh	ip and E	ntreprene	urial Dev	velopmer	nt Program	nmes.			K_2	
	CO2	Create	e innovat	ive busin	ess ideas	and mar	ket oppoi	tunities.							K ₅	
PME (KHU 701)	CO3	Unde	rstand the	e importa	nce of Pr	oject Ma	nagemen	t and Pro	ject's life	e cycle					K ₂	
	CO4	Analy	lyze Project Finance and project report.													
	Analy	ze Socia						K4								
CO \ PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1							1	1	2	2		3	1			
CO2							2	2	3	3		3	2			
CO3							3	3	2	3		3	2			
CO4							2	3	2	3		3	2			
CO5							2	3	3	2		3	3	l		