

KIET GROUP OF INSTITUTIONS, GHAZIABAD

Department of Computer Science and Information Technology

Course Outcome

Session 2021-22 Department of Computer Science and Information Technology

13 KM STONE, GHAZIABAD-MEERUT ROAD, GHAZIABAD – 201206

Website: www.kiet.edu

KIET GROUP OF INSTITUTIONS, GHAZIABAD

Department of Computer Science and Information Technology

Index

		4 th Semester
S No.	Subject Code	Subject Name
1	KOE044	Sensor & Instrumentation
2	KAS401	Technical Communication
3	KCS402	Theory of Automata & Formal Language
4	KCS401	Operating System
5	KCS403	Microprocessor
6	KNC402	Python Programming
7	KCS451	Operating Systems Lab
8	KCS452	Microprocessor Lab
9	KCS453	Python Programming Lab

6th Semester

S No.	Subject Code	Subject Name
1	KCS601	Software Engineering
2	KIT601	Data Analytics
3	KCS603	Computer Networks
4	KIT061	Blockchain Architecture Design
5	KOE068	Software Project Management
6	KNC602	Indian Tradition, Culture and Society
7	KCS651	Software Engineering Lab
8	KIT651	Data Analytics Lab
9	KCS653	Computer Networks Lab

	8 th Semester												
S No.	Subject Code	Subject Name											
1	KHU801	Rural Planning and Industrial Development											
2	KOE081	Cloud Computing											
3	KOE097	Big Data											
4	KIT851	Project											

13 KM STONE, GHAZIABAD-MEERUT ROAD, GHAZIABAD – 201206 Website: www.kiet.edu

CO PO and Mapping of CO PO 2nd Year

(2020-2024 BATCH)

Session: - 2021-22 Semester:- 4th

S. No.	Subject	Code
1	Sensor & Instrumentation	KOE044
2	Technical Communication	KAS401
3	Theory of Automata & Formal Language	KCS402
4	Operating System	KCS401
5	Microprocessor	KCS403
6	Python Programming	KNC402
7	Operating Systems Lab	KCS451
8	Microprocessor Lab	KCS452
9	Python Programming Lab	KCS453

Theory

		At the end of course, students will be able to: O1 Apply the use of sensors for measurement of displacement, force and pressure O2 Employ commonly used sensors in industry for measurement of temperature, position, accelerometer, vibration sensor, flow and level. O3 Demonstrate the use of virtual instrumentation in automation industries O4 Identify and use data acquisition methods C05 Comprehend intelligent instrumentation in industrial automation g PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS0 I 3 3 3 2 1 - - - 2 -													
	CO1	Apply the u	se of sen	isors for	measure	ment of o	displacer	nent, for	ce and p	ressure					3/ F
Sensor & Instrumenta tion CO2 Employ commonly used sensors in industry for measurement of temperature, position, accelerometer, vibration sensor, flow and level. (KOF044) Employ commonly used sensors in industry for measurement of temperature, position, accelerometer, vibration sensor, flow and level.													4/C		
(KOE044)	CO3	Demonstra	ate the us	e of virt	ual instru	imentatio	on in auto	omation	industrie	s					2/C
CO4Identify and use data acquisition methods														3/P	
	CO5	Comprehe	nd intelli	igent inst	trumenta	tion in ir	ndustrial	automati	ion						2/M
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2
~~~~														1	
CO1	CO1     3     3     3     2     1     1     -     -     -     2     -												-		
CO2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												-		
CO3		<u>3 3 3 3 3 2 1</u>													-
CO4		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												-	
CO5		3	3	3	3	3	2	2	-	-	-	-	-	-	-

-

					A	at the en	d of co	urse, stu	dents wi	ll be able t	0:				Bloom's Taxonomy  Knowledge Dimension
	CO1	Analyze th	e nature	and obj	ectives	of Techr	nical Co	mmunica	tion rele	vant for wo	orkplace as E	Ingineer.			K4/F,C
Communica tion (KAS	CO2	Utilizing dimension	the Tecł 1s.	nnical W	riting S	kills for	the purj	pose of T	echnical	Communic	cation and its	s exposu	re in various		K3/C,P
401)	CO3	13 Imbibe presentation strategies inputs with confidence in facing diverse audience in required situations at workplace.													
	CO4 Estimate the application of Technical Communication to promote their competence for various media like report generation, resume design, GD, and Interview etc.														K5/M
	generation, resume design, GD, and Interview etc.     CO5     Evaluate Voice dynamics and select appropriate cues for their own efficacy as fluent and efficient communicators.														K5/C,P
CO \ PO Map		1	2	3	4	5	6	7	8	9	10	11	12	PSO-1	PSO-2
CO1		-	-	-	-	_	_	-	-	2	3	-	3	-	-
CO2		-	-	-	-	-	-	-	-	2	3	-	3	-	
CO3	$\frac{1}{3}$													-	
CO4														-	
CO5		-	-	-	-	-	-	-	-	2	3	-	3	-	-

					At the	end of co	urse, stu	dents wil	l be able	to:					Bloom's Taxonomy  Knowledge Dimension
	CO1	Acquire a fu	ll underst	anding ar	nd applica	bility of <i>I</i>	Automata	Theory a	is the basi	s of all co	omputer s	cience la	nguages	design.	K1,K2  C,P
Theory of Automata &	CO2	Identify diffe life.	erent form	nal langua	iges and c	lesign the	recogniz	er for reg	gular lang	lages to e	establish t	heir appli	icability	in real	K3  C,P
Formal Language	CO3	Analyze & D	Design gra	ammars fo	or differer	nt formal	languages	5.							K4 C,P
(KCS402)	CO4	Understand t	he design	ning of Pu	Ishdown A	Automata	and Turi	ng machi	nes.						K4,K5 C, P
CO5   Determine the decidability and intractability of computational problems.													K5,K6 C, P		
CO \ PO Map	PO Mapping PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS0													PSO2	
CO1   3   2   2   2   1   -   -   -   1   1   1   2											2	2			
CO2		2	3	3	2	1	-	-	-	-	1	1	1	2	2
CO3     2     2     3     3     1     -     -     -     1     1     1     2									2	2					
CO4	CO4   2   3   3   2   1   -   -   -   1   1   1   1										1				
CO5   1   3   2   3   1   -   -   1   1   1   1									1						

				At the en	d of cour	·se, stude	nts will <b>k</b>	oe able to	:						Bloom's Taxonomy  Knowledge Dimension
	CO1	Understa	nd the s	structur	e, funct	ions and	d types	of OS.							K2   F, C
	CO2	Illustrate	the prin	nciples	of conc	urrency	, Deadl	locks ar	nd syncl	hroniza	tion pro	blem i	in pro	cess.	K3   C, P
Operating	CO3	Explore a	about P	rocesse	s, Threa	ids, and	lvariou	s CPU	schedul	ing alg	orithms	•			K4   C, P
SystemCO4Compare various memory management schemes.												K5   C, P			
(Res 101)	CO5	Illustrate	various	s I/O ma	anagem	ent and	File Sy	/stems.							K3   C, P
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PS O1	PSO2
CO1		3	2	2	-	-	-	-	-	-	-	-	3	2	2
CO2		2	2	3	3	-	-	-	-	-	-	-	2	2	2
CO3		2	3	3	-	-	-	-	-	-	-	1	3	2	2
CO4		3	3	3	3	-	-	-	-	-	-	1	1	3	3
CO5 3 2 - 2 - 2 2 - 2 2 3										3					

					At t	he end of	course, s	students	will be al	ole to:					Bloom's Taxonomy  Knowledge Dimension
	CO1	Recall and	apply basi	ic concep	t of digita	l compute	er to Micı	oprocess	or based s	systems.					K3,K4  C,P
	CO2	Identify det	tailed s/w	& h/w str	ucture of	8085/808	86 Microp	processor.							K2,K4  C,F
	CO3	Examine ar techniques.	nd solve h	ardware a	and softwa	are proble	ems after s	studying i	instruction	n set of 8	085/8086	program	ning		K3  C,P
Mircroprocessr (KCS403)	CO4	Analyze software problems after studying instruction set of 8085 and programming techniques.													K4  C,P
(1105405)	CO5	Illustrate te 8255 PPI,8	chniques, 254 progr	skills and ammable	l hardwar interval t	e tools ne imer and	cessary fo 8259A pr	or compu ⁻ ogramma	ter engine ble interr	eering pra	ctice after oller.	r studying	; 8237 D	MA,	K5  C,P
CO \ PO Mapj	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS 01	PSO2
CO1 3 2 2 - 2 - 2 - 2 2 2									-						
CO2		3	2	-	2	2	1	1	-		-	2	-	-	2
CO3		3	3	2	3	1	-	2	-	-	-	2	2	-	2
CO4		3	3	3	1	1	-	2	-	2	-	1	-	2	2
CO5		3	1	-	-	3	-	-	1	1	-	-	2	2	-

					А	t the end	l of cours	se, studen	its will be	e able to:					Bloom's Taxonomy  Knowledge Dimension
	CO1	Underst	and and v	vrite simp	ole Pythor	n program	ıs								K2  C
	ditionals	and loops								K5  C,P					
Python     CO3     Design python functions and to use Python data structures lists, tuples, dictionaries												K4  P			
(KNC-402)	CO4	Perform	Perform input/output with files in Python and to apply OOPs concepts in python												
	CO5	Apply s	earching,	sorting a	nd mergin	ng in Pytł	ion								K3  C
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1		3	1	2	1	3	-	-	-	-	-	-	1	1	1
CO2		3	2	2	2	3	-	-	-	-	-	-	2	2	2
CO3	CO3     3     3     2     2     3     -     -     -     -     2     2										2				
CO4 3 2 2 2 3 - - - - 2 2								2							
CO5		3	2	2	3	3	-	-	-	-	-	-	2	2	2

#### **Practical**

				At the e	nd of cou	ırse, stud	ents will	be able t	0:						Bloom's Taxonomy  Knowledge Dimension
	CO1	Apply kn	owledg	ge of ba	sic UNI	IX Syst	em call	s to sol	ve vario	ous soft	ware pr	oblems	•		K3  C,P
	CO2	Examine	various	s proces	ss synch	nronizat	ion pro	blems a	and mer	nory m	anagem	ent tecl	hnique	s.	K4  C,P,M
Operating System Lab (KCS 451)	CO3	Compare algorithn	ompare the performance of various CPU scheduling algorithms and page replacement gorithms.												
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PSO2
CO1		2	-	-	-	-	-	-	-	-	-	-	1	1	1
CO2 3 1 2 1 - - - - - 2 2										2					
CO3   3   2   3   3   -   -   -   -   1   3   2								2							

					At th	ne end of	course, s	tudents v	vill be ab	le to:					Bloom's Taxonomy  Knowledge Dimension
	CO1	Model	basic ari	thmetic o	operation	s assemb	oly langu	age prog	rams on	8085 mi	croproce	ssor.			K3   C, P
	CO2	Build a	dvanced	arithmet	ic operat	ions asse	embly laı	nguage p	rograms	on 8085	micropr	ocessors			K3   C, P
Micropro cessor Lab	CO3	Model	Model basic arithmetic operations assembly language programs on 8086 microprocessor.   F												
(KCS452)	CO4	Build advanced arithmetic operations assembly language programs on 8086 microprocessor.													K5   C, M
	CO5	Design interfacing circuits with microprocessors.													K3   C, P
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1		3	2	2	3	2	-	-	-	-	-	-	2	-	1
CO2		3	2	2	2	2	-	-	-	-	-	-	2	-	2
CO3		2	2	3	3	2	-	-	-	-	-	-	2	-	2
CO4		3	2	3	2	2	-	-	-	-	2	-	2	-	2
CO5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										-	-	2	-	2

					At the	e end of o	course, st	udents w	ill be abl	e to:					Bloom's Taxonomy  Knowledge Dimension	
	CO1	Underst	and basic	syntax o	f python i	mplemen	itation								K2  C	
	CO2	Practica	lly apply	looping a	and condition	tional cor	structs								K3 C,P	
Python Programming Lab	CO3	Develop	o progran	ns related	with list o	lata struc	ture.								K5  C,P	
	CO4	Design programs related to tuples, dictionary and set														
(KCS-453)	CO5	Apply s	Design programs related to tuples, dictionary and set Apply searching, sorting and merging in Python													
CO \ PO Mappi	ng	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PSO2	
CO1		3	1	2	1	3	-	-	-	-	-	-	1	1	1	
CO2		3	2	2	2	3	-	-	-	-	-	-	2	2	2	
CO3		3	3	2	2	3	-	-	-	-	-	-	2	2	2	
CO4		3	2	2	2	3	-	-	-	-	-	-	2	2	2	
CO5		3	2	2	3	3	-	-	-	-	-	-	2	2	2	

## CO PO and Mapping of CO PO 3rd Year (2019-2023 BATCH)

#### Session:- 2021-22 Semester:- 6th

S. No.	Subject	Code
1	Software Engineering	KCS601
2	Data Analytics	KIT601
3	Computer Networks	KCS603
4	Blockchain Architecture Design	KIT061
5	Software Project Management	KOE068
6	Indian Tradition, Culture and Society	KNC602
7	SE Lab	KCS651
8	Data Analytics Lab	KIT651
9	Computer Networks Lab	KCS653

#### **Theory**

					At t	he end o	f course,	students	will be a	ble to:					Bloom's Taxonomy  Knowledge Dimension
	CO1	Explain	various s	software c	haracteri	stics and	analyze d	lifferent s	oftware I	Developm	nent Mode	els			K3  F,C
	CO2	Demons develop	strate the ment mee	contents of exce	of a SRS ed applic	and apply able stand	y basic so dards	ftware qu	ality assu	irance pra	actices to	ensure th	at design,		K3  F,C
	CO3	Compare and contrast various methods for software design.													K4  C,P
Software Engineering	CO4	Formulate testing strategy for software systems, employ techniques such as unit testing, Test driven development a functional testing													K3 P
(KCS601)	CO5	Manage manage	software ment tool	e developi s for deve	nent proc elopment	cess inder , mainten	endently ance and	as well a analysis.	s in team	s and mal	ke use of	Various s	oftware		K6 C,P,M
CO \ PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3 3 3 1 3 1 - 2 1 1 3 3 3												3	3
CO2		<u>3 3 3 3 2 2 2 2 2 3 3 -</u>												-	3
CO3		3	3	2	2	3	2	1	1	2	2	3	3	-	2
CO4		3	3	2	2	3	2	1	1	2	2	3	3	-	2
CO5		3	3	3	1	3	3	3	2	3	1	3	2	3	3

				At the	end of c	ourse, stu	dents wil	ll be able	to:						Bloom's Taxonomy  Knowledge Dimension
	CO1	Discuss vario	us concep	ts of the	data anal	ytics pipel	ine .								K2/ C, P
	CO2	Apply classif	ication and	d regressi	on techn	iques									K3/P
	CO3	Explain and a	pply mini	ng techni	ques on	streaming	data								K2,/C,P
Data Analytics															
(KIŤ601)	CO4	Compare diff	erent clus	tering and			K4/P								
	CO5	Describe the o	concept of	f R progra	amming a	and impler	ment anal	ytics on E	Big data u	sing R.					K3/P
CO\P Mappi	O ng	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO 12	PS O1	PSO2
CO1		2	2	-	-	-	-	-	_	-	-	-	-	2	2
CO2		3	3	2	3	2	-	-	-	-	-	-	-	3	2
CO3		3	2	2	2	1	-	-	-	-	-	-	-	3	2
CO4		3	3	3	3	3	-	-	-	-	-	-	-	3	2
CO5		3	3	3	3	3	-	-	-	-	-	-	-	3	2

				At	the end	of course	e, studen	ts will be	able to:						Bloom's Taxonomy  Knowledge Dimension		
	CO1	Underst	tand how	the data	is transm	nitted fro	m point-t	o-point a	nd the st	ructure o	f network	<s.< td=""><td></td><td></td><td>K1,K2/C,P</td></s.<>			K1,K2/C,P		
	CO2	Analysis	of differe	ent mediu	m access	control p	protocols	and sumr	narize da	ta link lay	er protoc	cols.			K3/C,P		
Computer	CO3	Underst	and the co	oncept of	routing a	nd IP add	lressing i	n the netv	vork laye	r.					K2,K3/C,P		
Networks (KCS 603)	CO4	Study o	f transpo		K2,K3/C,P												
	CO5	Underst	and the ro	d the role of protocols and emailing service and application layer services.													
CO \ PO Ma	pping	PO1	PO2	PSO1	PSO2												
CO1		3	2	2	-	-	-	-	-	-	-	2	3	1	3		
CO2		2	1	1	-	-	-	-	-	-	-	1	3	1	2		
CO3		3	2 1 1 1 1 1 1 1 1 1   3 3 2 2 - - - 2 3 3 2											2	2		
CO4		3	3 3 2 2 2 3 1												3		
CO5		2	1	2	-	-	2	-	-	-	2	2	3	2	3		

					At the	e end of	course,	students	will be al	ble to:					Bloom's Taxonomy  Knowledge Dimension	
	CO1	Describe the b	oasic und	erstandi	ing of B	lockcha	in archite	ecture alor	ng with it	s primitiv	ve.				K2,K3/F,C	
	CO2	Explain the re	equireme	nts for b	oasic pro	otocol al	ong with	scalabilit	y aspects						K2,K3/C,P	
Blockchain Architecture	CO3	Design and de	eploy the	consen	sus proc	cess usir	ng fronter	nd and bad	ckend.						K3,K4/C,P	
Design (KIT061)	CO4	Apply Blockc	ly Blockchain techniques for different use cases like Finance and Trade/Supply.													
	CO5	Apply Blockc	hain tech	niques	for diffe	erent use	e cases of	Governn	nent activ	vities.					K3,K6/C,P, M	
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2	
CO1		2	2	3	1	3	1	1	2	1	1	1	3	2	1	
CO2		1	2	3	1	3	1	1	2	1	1	1	3	2	1	
CO3		1	2	3	1	3	1	1	2	1	1	1	3	2	1	
CO4		1	2	2	1	3	3	2	2	1	1	2	3	2	2	
CO5		1	2	2	1	3	3	2	2	2	2	2	3	2	2	

				At	the end o	of course	, students	s will be a	able to:						Bloom's Taxonomy  Knowledge Dimension	
	CO1	Unders softwar	tand the reproject	basic cor t	ncepts of	software	e project	manager	nent and	l perform	the feas	sibility st	tudy of a		K2, K3/C,P	
Software Project	CO2	Unders a projec	tand the	agile sot	ftware de	evelopme	ent metho	ods and e	estimate	the effor	t and bud	lget requ	ired to ca	arry out	K2, K3/C,P	
Management (KOE068)	CO3	Unders comple	tand the tion	concepts	of proje	ct schedu	uling and	l risk ana	lysis to o	compute	time req	uired for	project		K2, K3/C,P	
	CO4	Unders	tand the	concepts	of proje	ct monite	oring and	l controll	ing a pr	oject exe	ecution a	nd chang	ge manag	gement	K2, K3/C,P	
	CO5	Unders	derstand the concepts of people management													
CO \ PO Mapp	ing	PO1	Prosent and the concepts of people managementPO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01													
CO1		3	2	-	-	1	-	-	-	-	-	2	-	-	-	
CO2		2	2	-	-	1	-	-	-	-	-	2	-	-	-	
CO3		3 2 -   1 -   -   2 -  -												-		
CO4		3	2	-	-	1	-	-	-	-	-	2	-	-	-	
CO5		2	2	-	-	1	-	-	-	-	-	1	-	-	-	

					At t	he end of	f course,	students	will be al	ble to:					Bloom's Taxonomy  Knowledge Dimension	
	CO1	Identify a	and undei	rstand the	e roots an	d details	of Society	/ State an	d Polity ii	n India.					K1,K2/F,C	
Indian Tradition	CO2	Understa	and the in	nportance	e of Indiar	n Literatu	re, Cultur	e, Traditi	on, Practi	ces and t	o apply in	the pres	ent syster	n.	K2, K3/ F,M	
Culture and Society	CO3	Analyze Six Syste	the Indiai m Indian	n Religion Philosoph	, Philoso y and to	phy, Prac apply in p	tices and present sy	in shado stem	w of Pre-	-Vedic an	d Vedic R	eligion, B	Buddhism	, Jainism,	K3,K4/C,M	
(KNC602)	CO4	Analyze	the Scienc	ce, Manag	gement ar	nd Indian	Knowled	ge Systen	n and to a	ipply in th	ie present	t system.			K3, K4/ F,P,M	
	CO5	Evaluate and to cr	valuate the Indian Architect, Engineering and Architecture in Ancient India, India's Cultural Contribution to the World to create an environment in Arts and Cultural for the present system.     PO1   PO2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO11   PO12   PS6													
CO \ PO Ma	pping	PO1	PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS													
CO1		-	2	-	2	1	2	-	2	1	2	2	2	-	-	
CO2		2	2	1	2	2	1	2	2	-	3	2	2	1	1	
CO3	1 2 - 2 - 1 - 2 - 2 1 2 -										-					
CO4		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												2	2	
CO5		2	2	2	3	2	1	1	2	2	2	2	2	2	3	

#### **Practical**

					At th	e end of	course, s	tudents	will be al	ole to:					Bloom's Taxonomy  Knowledge Dimension	
	CO1	Underst	and the f	undament	al concep	ots of con	nputer ne	tworking	and Netw	vork topo	logies.				K1,K2/F,C	
	CO2	Know a	bout diffe	erent type	s of netw	ork devic	ces and de	esign, imp	olement, a	and analy	ze simple	e compute	er network	IS .	K3, K4/C,P	
Computer Networks	CO3	Learn thenginee	n the basic network commands and use techniques, skills, and modern networking tools necessary for neering practice.													
Lab (KCS653)	CO4	Formula	prmulate problems and their solutions, think creatively and communicate fectively.													
	CO5	Describ persona	e how rap l knowled	oid progre lge and u	ess of con nderstanc	nputer ne ling.	twork tec	hnology	can impa	ct on the	society ar	nd continu	ie to adva	nce	K3, K4/M	
CO \ PO Map	oping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		<u>3 2 2 2 2 3 3 3 2 3</u>													3	
CO2		3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
CO3		3	2	3	2	3	2	2	3	2	2	2	3	3	3	
CO4		2	2	3	2	3	2	2	2	3	3	2	2	3	3	
CO5		3	2	2	2	2	3	2	2	3	2	2	2	3	3	

					At th	e end of c	course, st	udents w	ill be abl	e to:					Bloom's Taxonomy  Knowledge Dimension	
	CO1	Identify and non	ambiguit -function	ies, incon al require	isistencie ment	s and inco	ompletene	ess from a	requirem	ents spec	ification	and state	e functior	nal	K4 F,C,P	
	CO2	Identify use case	different es with dif	actors an fferent typ	d use cas bes of rela	es from a ationship	given pro	blem stat	ement an	d draw us	se case d	iagram to	o associat	e	K5 C,P	
Software Engineering	CO3	Draw a	Draw a class diagram after identifying classes and association among them													
Lab (KCS651)	CO4	Graphic sequence	Draw a class diagram after identifying classes and association among them 													
	CO5	Able to	use mode	rn engine	ering too	ls for spe	cification	, design, i	mplemen	tation and	d testing				K4 C,P	
CO \ PO Mapp	oing	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		3	3	3	-	3	2	-	-	-	2	3	2	1	3	
CO2		<u>3 3 3 3 1 - 1 1 3 2 1</u>												2		
CO3		3	3	2	2	3	-	-	-	-		3	2	1	2	
CO4		3	3	3	3	3	-	-	-	-		3	2	1	-	
CO5		3	3	3	3	3	-	-	-	-	2	3	2	1	2	

					At th	ie end of	course, s	tudents v	vill be ab	le to:					Bloom's Taxonomy  Knowledge Dimension
	CO1	Implen	nent num	erical an	d statisti	cal analy	vsis on va	rious dat	a source	S					K3/P
	CO2	Apply	data prep	rocessin	g and dii	nensiona	ality redu	ction me	thods on	ı raw dat	a				K3/P
Data Analytics	CO3	Implen	nent linea	ar regress	sion tech	nique on	numeric	data for	prediction	on					K3/P
Lab (KIT651)	CO4	Execut	cute clustering and association rule mining algorithms on different datasets												
(1111001)	CO5	Implen	nent and	evaluate	the perfo	ormance	of KNN	algorithr	n on diff	erent da	tasets				K4/P
CO \ PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO 1	PSO2
CO1		3	2	2	2	2	-	-	-	-	-	-	-	2	3
CO2		2 2 2 2 2 - - - 2													3
CO3		3	3	2	2	3	-	-	-	-	-	-	-	3	3
CO4		3	3	3	2	3		-	-	-	-	-	-	3	3
CO5		3	3	2	2	3	-	-	-	-	-	-	-	3	3

## **CO PO and Mapping of CO PO 4th Year**

#### (2018-2022 BATCH)

#### Session:- 2021-22 Semester:- 8th

S. No.	Subject	Code
1	Rural Development	KHU801
2	Quality Management	KOE085
3	Big Data	KOE097
4	Project	KIT851

#### **Theory**

Rural Planning and Industrial Development (KHU-801)		At the end of course, students will be able to:													
	CO1	Understand the definitions, concepts and components of Rural Development													
	CO2	² Distinguish among importance, structure, significance and resources of Indian rural economy													
	CO3	Apply learning of area development programs and see their impact.													
	CO4	Apply knowledge of rural entrepreneurship													
	CO5	Evaluate different methods for human resource planning													
CO \ PO Mapping		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		1	1	1	1	1	2	2	3	2	1	2	1	1	1
CO2		1	1	1	1	1	2	2	3	2	1	2	1	1	1
CO3		1	1	1	1	1	2	2	3	3	1	2	1	1	1
CO4		1	1	1	1	1	2	2	3	3	1	2	1	1	1
CO5		1	1	1	1	1	2	2	3	3	1	2	1	1	1

Quality Management (KOE-085)	At the end of course, students will be able to:														Bloom's Taxonomy  Knowledge Dimension
	CO1 Describe the concepts of a quality management system in order to managing a product quality.													K2/C	
	CO2	Descr: aspect	ibe the e ts in cont	ffective trolling t	organiza he qualit	tional str y of a pr	ructure a oduct.	nd the m	ethods o	of manag	ing the e	conomic	and the	human	K2/C
	Demonstrate the application of Statistical Quality Control techniques in managing a product quality     CO3   proactively.													K2, K3/C, P	
	CO4Describe the various techniques for the evaluation and the improvement of reliability and maintainability as well as the motivational techniques (zero defects, quality circles) for the adaptability of a new quality control system.											K2/C, P			
	CO5	CO5   Describe the ISO 9000 Series, Taguchi method and JIT in improving a product quality.													
CO \ PO Mapping		PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	2	-	-	1	-	-	-	-	-	2	-	-	-
CO2		3	2	-	-	1	-	-	-	-	-	2	-	-	-
CO3	3 2 1 2							-	-						
CO4		3	2	-	-	1	-	-	-	-	-	2	-	-	-
CO5	3 2 1 1 1									-	-				

Big Data (KOE-097)		At the end of course, students will be able to:													Bloom's Taxonomy  Knowledge Dimension	
	CO1	Discuss	Discuss the fundamental concepts of Big Data & its challenges.													
	CO2	Explain non-relational (NoSQL) database concepts and its Distribution models													K2/C	
	CO3	Understand Hadoop Ecosystem and discuss Hadoop Distributed File System (HDFS)													K2/C, P	
	CO4	Discuss Hadoop MapReduce framework, the working of MapReduce on data stored in HDFS and YARN concepts												K2, K3/C, P		
	CO5	Apply No-SQL databases concepts with architecture like HIVE, Pig and their queries.													K4	
CO \ PO Mapping		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		1	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO2		2	1	-	-	-	-	-	-	-	-	-	-	-	-	
CO3		2	2	-	2	1	-	-	-	-	-	-	-	-	2	
CO4		2	1	-	1	2	-		-	-	-	-	-	-	2	
CO5		2	1	-	2	2	-		-	-	-	-	-	-	3	

#### **Practical**

			At the end of course, students will be able to:													
	CO1	Select a	Select and summarize all aspects of the real-life problem through survey.													
Project (KIT851)	CO2	Apply a	Apply acquired knowledge to develop working model and plan different phases for its execution.													
,	CO3	Analyz	Analyze outcome of each phase using various tools, techniques, and coding practices.													
	CO4	Justify/defend opinions, validity of ideas or quality of work based on a set of criteria.													K5   C, P	
	CO5	Test the working model and modify related phase accordingly. Finally integrate all phases														
CO \ PO Mapping		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C01		3	3	3	3	3	2	1	1	3	3	3	3	1	1	
CO2		3	3	3	3	2	2	1	1	3	2	3	3	2	2	
CO3		3	3	3	3	2	2	1	1	3	2	3	3	2	3	
CO4		3	3	3	3	2	2	1	1	3	2	2	3	2	3	
CO5		3	3	3	3	2	2	1	1	3	2	1	2	2	3	