





# DEPARTMENT OF MECHANICAL ENGINEERING

# COs and CO-PO mapping ODD SEM 2025-26







| Program Name: B. Tech. | Academic Session: 2025-26 | Semester: I               |
|------------------------|---------------------------|---------------------------|
| Course name: CFE       | Course Code: MAL101L      | Faculty: Dr. Sachin Kumar |

| Tagging   | COs with BLs & KCs                                                                                  |                                    |                  |
|-----------|-----------------------------------------------------------------------------------------------------|------------------------------------|------------------|
| CO No.    | Statement of Course Outcome                                                                         | Bloom's                            | Knowledge        |
| After con | apletion of the course, the student will be able to                                                 | Cognitive<br>Process Level<br>(BL) | Category<br>(KC) |
| CO1       | Apply the concept of partial differentiation in application of homogeneous and composite functions. | 3                                  | C, P             |
| CO2       | Apply knowledge of partial differentiation in extrema, series expansion of functions and Jacobians. | 3                                  | C, P             |
| CO3       | Apply the concept of vector differentiation in engineering problems.                                | 3                                  | C, P             |
| CO4       | Employ the concept of multiple integration to find the area of bounded region.                      | 3                                  | C, P             |
| CO5       | Apply the concept of analytic and harmonic functions of complex variables in transformation.        | 3                                  | C, P             |

| Mapping of Cou | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |      |      |      |       |       |       |      |      |  |
|----------------|----------------------------------------------------------------|------|------|------|------|------|------|------|------|-------|-------|-------|------|------|--|
|                | Course Name (Course Code)                                      |      |      |      |      |      |      |      |      |       |       |       |      |      |  |
| Course Code    | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |  |
| CO-1           | 2                                                              | 2    | 2    |      |      |      |      | 1    |      |       |       | 2     |      |      |  |
| CO-2           | 2                                                              | 2    | 2    |      |      |      |      | 1    |      |       |       | 2     |      |      |  |
| CO-3           | 3                                                              | 2    | 2    |      |      |      |      | 1    |      |       |       | 1     |      |      |  |
| CO-4           | 2                                                              | 2    | 2    |      |      |      |      | 1    |      |       |       | 1     |      |      |  |
| CO-5           | 2                                                              | 2    | 2    |      |      |      |      | 1    |      |       |       | 1     |      |      |  |
| PO Target      | 2.2                                                            | 2    | 2    |      |      |      |      | 1    |      |       |       | 1.4   |      |      |  |



Signature of Course Coordinator

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B. Tech. | Academic Session: 2025-26 | Semester: I                       |
|------------------------|---------------------------|-----------------------------------|
| Course name: SPD       | Course Code: PH101L       | Faculty: Dr. Dhirendra Kr. Sharma |

| Tagging C  | COs with BLs & KCs                                                                                |                    |               |
|------------|---------------------------------------------------------------------------------------------------|--------------------|---------------|
| CO No.     | Statement of Course Outcome                                                                       | Bloom's Cognitive  | Knowledge     |
| After comp | pletion of the course, the student will be able to                                                | Process Level (BL) | Category (KC) |
| CO1        | Illustrate the basic concept of crystalline materials and their appropriate use.                  | 3                  | C, P          |
| CO2        | Apply the fundamentals of basic semiconductor Physics on transistor and MOSFET.                   | 3                  | С,Р           |
| CO3        | Apply the concepts of semiconductor Physics in aspect of solar cell and Zener diode.              | 3                  | С,Р           |
| CO4        | Implementing of semiconductor Physics to study various characteristics of optoelectronic devices. | 3                  | С,Р           |
| CO5        | Apply the concept of Quantum Physics to study various phenomenon.                                 | 3                  | С,Р           |

| Mapping of Course ou | itcomes wit               | h Program | outcomes C | O-POs Mat | trix |      |      |      |      |       |       |       |      |      |  |
|----------------------|---------------------------|-----------|------------|-----------|------|------|------|------|------|-------|-------|-------|------|------|--|
|                      | Course Name (Course Code) |           |            |           |      |      |      |      |      |       |       |       |      |      |  |
| Course Code          | PO-1                      | PO-2      | PO-3       | PO-4      | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |  |
| CO-1                 | 2                         | 1         | -          | -         | -    | 2    | 2    | -    | -    | 2     | -     | 3     | -    | 1    |  |
| CO-2                 | 3                         | 2         | -          | -         | -    | 2    | 2    | -    | -    | 2     |       | 3     |      | 1    |  |
| CO-3                 | 3                         | 2         | -          | -         | -    | 2    | 2    | -    | -    | 2     | -     | 3     | -    | 1    |  |
| CO-4                 | 3                         | 2         | -          | -         | -    | 2    | 2    | -    |      | 2     | -     | 3     | -    | 1    |  |
| CO-5                 | 2                         | 1         | -          | -         | -    | -    | -    | -    | -    | 1     | -     | 2     | -    | 1    |  |
| PO Target            | 2.6                       | 1.6       | -          | -         | -    | 2    | 2    | -    | _    | 1.8   | -     | 2.8   | -    | 1    |  |





Signature of Course Coordinator

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B.Tech- ME                    | Academic Session: 2025-26 | Semester: I                |
|----------------------------------------------|---------------------------|----------------------------|
| Course name: Programming for Problem Solving | Course Code: IT101L       | Faculty : Mr. Naman Sharma |

| Tagging COs      | with BLs & KCs                                                                                     |                           |               |  |
|------------------|----------------------------------------------------------------------------------------------------|---------------------------|---------------|--|
| CO No.           | Statement of Course Outcome                                                                        | Bloom's Cognitive Process | Knowledge     |  |
| After completion | on of the course, the student will be able to                                                      | Level (BL)                | Category (KC) |  |
| CO1              | Apply programming constructs of C language to solve real-world problems                            | 3                         | С,Р           |  |
| CO2              | Use the concepts of looping, branching, and decision-making statements for a given problem.        | 3                         | C,P           |  |
| CO3              | Develop Solutions to problems using modular programming constructs such as functions and recursion | 6                         | C,P,M         |  |
| CO4              | Demonstrate the ability to write C programs using Array, pointers and strings                      | 3                         | C,P           |  |
| CO5              | Design a solution to problems using the concepts of structure, union, pointers and files handling  | 6                         | C,P,M         |  |

| Mapping of Co      | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |      |      |      |       |       |       |      |      |  |
|--------------------|----------------------------------------------------------------|------|------|------|------|------|------|------|------|-------|-------|-------|------|------|--|
|                    | Course Name (Course Code)                                      |      |      |      |      |      |      |      |      |       |       |       |      |      |  |
| <b>Course Code</b> | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |  |
| CO-1               | 3                                                              | 3    |      |      | 2    |      |      | 1    |      |       |       | 2     |      |      |  |
| CO-2               | 3                                                              | 3    |      | 2    | 2    |      |      | 1    |      |       |       | 2     |      |      |  |
| CO-3               | 3                                                              | 3    |      | 2    | 2    |      |      | 1    |      |       |       | 2     |      |      |  |
| CO-4               | 3                                                              | 3    |      | 2    | 2    |      |      | 1    |      |       |       | 2     |      |      |  |
| CO-5               | 3                                                              | 3    | 2    | 2    | 2    |      |      | 1    |      |       |       | 2     |      |      |  |
| PO Target          | 3                                                              | 3    | 2    | 2    | 2    |      |      | 1    |      |       |       | 2     |      |      |  |

Haman.

O)

Signature of Dean

**Signature of Course Coordinator** 

**Signature of Program Head** 

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B.Tech                                 | Academic Session: 2025-26 | Semester: 1 <sup>st</sup> |
|------------------------------------------------------|---------------------------|---------------------------|
| Course name: Exploration in Electrical Engineering - | Course Code: EE102L       | Faculty: Dr Rajeev Kumar  |

| <b>Tagging CO</b> | s with BLs & KCs                                                                                                     |                    |               |
|-------------------|----------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| CO No.            | Statement of Course Outcome                                                                                          | Bloom's Cognitive  | Knowledge     |
| After comple      | tion of the course, the student will be able to                                                                      | Process Level (BL) | Category (KC) |
| CO1               | Understand the concepts of electric circuit solutions with DC supply using mesh-nodal analysis and Network Theorems. | 2                  | F,C,M         |
| CO2               | Apply the concepts of electrical circuits with AC supply in single and three phase system                            | 3                  | F,C,M         |
| CO3               | Analyze the equivalent circuit and performance of single phase AC transformer                                        | 4                  | F,C,M         |
| CO4               | Illustrate the working principle of induction motors, synchronous machines and DC machines.                          | 4                  | F,C,M         |

| <b>Course Code</b> | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 |
|--------------------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| CO-1               | 2    | 2    | 2    | 2    | -    | -    | -    | -    | -    | -     | -     | 2     |
| CO-2               | 3    | 2    | 2    | 2    | -    | -    | -    | -    | -    | -     | -     | 2     |
| CO-3               | 3    | 3    | 2    | 2    | -    | -    | -    | -    | -    | -     | -     | 3     |
| CO-4               | 3    | 3    | 2    | 2    | -    | -    | -    |      | -    | -     | -     | 3     |
| PO Target          | 2.75 | 2.5  | 2    | 2    | -    | -    | -    | -    | -    | -     | -     | 2.5   |

Com Kiman

**Signature of Course Coordinator** 

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B.Tech.                 | Academic Session: 2025-26 | Semester: 1st         |
|---------------------------------------|---------------------------|-----------------------|
| Course name: IoT and Embedded Systems | Course Code: EE112B       | Faculty: Varun Sharma |

| CO No.       | Statement of Course Outcome                                       | Bloom's Cognitive  | Knowledge     |
|--------------|-------------------------------------------------------------------|--------------------|---------------|
| After comple | tion of the course, the student will be able to                   | Process Level (BL) | Category (KC) |
| CO1          | Understand the basic concepts of sensors and transducers.         | 2                  | С,Р           |
| CO2          | Understand basics of embedded system and different IoT boards.    | 2                  | С,Р           |
| CO3          | Apply basic operations and programming techniques of IoT devices. | 3                  | С,Р           |
| CO4          | Apply smart technology knowledge through case studies.            | 3                  | С,Р           |

| Mapping of Co             | urse out | tcomes v | vith Pro | gram ou | tcomes | CO-PO | s Matrix    | [    |      |       |       |       |      |      |
|---------------------------|----------|----------|----------|---------|--------|-------|-------------|------|------|-------|-------|-------|------|------|
| Course Name (Course Code) |          |          |          |         |        |       |             |      |      |       |       |       |      |      |
| <b>Course Code</b>        | PO-1     | PO-2     | PO-3     | PO-4    | PO-5   | PO-6  | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                      | 2        | -        | -        | -       | 2      | 2     | 2           | -    | -    | -     | -     | 2     | _    | 2    |
| CO-2                      | 2        | _        | 2        | -       | 2      | 2     | 2           | -    | 2    | -     | -     | 2     | -    | 2    |
| CO-3                      | 3        | -        | 3        | 2       | 3      | 2     | 2           | -    | 2    | -     | -     | 2     | -    | 3    |
| CO-4                      | 3        | 2        | 3        | 3       | 3      | 2     | 2           | -    | 2    | -     | -     | 2     | -    | 3    |
| PO Target                 | 2.5      | 2        | 2.66     | 2.5     | 2.5    | 2     | 2           |      | 2    |       |       | 2     |      | 2.5  |

Lown ghorma.

Signature of Dean

**Signature of Course Coordinator** 

Signature of Program Head

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B. Tech.       | Academic Session: 2025-26 | Semester: I                 |
|------------------------------|---------------------------|-----------------------------|
| Course name: Design Thinking | Course Code: IT103L       | Faculty: Dr. Ashish Karnwal |

| Tagging ( | COs with BLs & KCs                                                                                     |                      |                  |  |
|-----------|--------------------------------------------------------------------------------------------------------|----------------------|------------------|--|
| CO No.    | Statement of Course Outcome                                                                            | Bloom's<br>Cognitive | Knowledge        |  |
| After com | apletion of the course, the student will be able to                                                    | Process Level (BL)   | Category<br>(KC) |  |
| CO1       | Understand the basic requirements of a good design.                                                    | 3                    | C, P             |  |
| CO2       | Empathize and ideate the solutions to problems in his environment.                                     | 3                    | C, P             |  |
| CO3       | Prototype and test the developed solutions.                                                            | 3                    | C, P             |  |
| CO4       | Apply the principles of design thinking on developing innovative solutions to the real world problems. | 3                    | C, P             |  |

| Mapping of Cou | irse outc                 | omes wit | h Progra | am outco | mes CO | -POs Ma | ıtrix       |      |      |       |       |       |      |      |  |
|----------------|---------------------------|----------|----------|----------|--------|---------|-------------|------|------|-------|-------|-------|------|------|--|
|                | Course Name (Course Code) |          |          |          |        |         |             |      |      |       |       |       |      |      |  |
| Course Code    | PO-1                      | PO-2     | PO-3     | PO-4     | PO-5   | PO-6    | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |  |
| CO-1           | 1                         | 2        | 3        | 2        |        | 1       |             |      | 2    | 2     |       | 2     |      |      |  |
| CO-2           | 1                         | 2        | 3        | 2        |        | 1       |             |      | 2    | 2     |       | 2     |      |      |  |
| CO-3           | 1                         | 2        | 3        | 2        |        | 1       |             |      | 2    | 2     |       | 2     |      |      |  |
| CO-4           | 1                         | 2        | 3        | 2        |        | 1       |             |      | 2    | 2     |       | 2     |      |      |  |
| PO Target      | 1                         | 2        | 3        | 2        |        | 1       |             |      | 2    | 2     |       | 2     |      |      |  |

XX

Signature of Course Coordinator

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B. Tech. | Academic Session: 2025-26 | Semester: I                       |
|------------------------|---------------------------|-----------------------------------|
| Course name: SPD       | Course Code: PH101L       | Faculty: Dr. Dhirendra Kr. Sharma |

| Tagging Co  | Os with BLs & KCs                                                                                 |                    |               |
|-------------|---------------------------------------------------------------------------------------------------|--------------------|---------------|
| CO No.      | Statement of Course Outcome                                                                       | Bloom's Cognitive  | Knowledge     |
| After compl | etion of the course, the student will be able to                                                  | Process Level (BL) | Category (KC) |
| CO1         | Illustrate the basic concept of crystalline materials and their appropriate use.                  | 3                  | C, P          |
| CO2         | Apply the fundamentals of basic semiconductor Physics on transistor and MOSFET.                   | 3                  | C,P           |
| CO3         | Apply the concepts of semiconductor Physics in aspect of solar cell and Zener diode.              | 3                  | С,Р           |
| CO4         | Implementing of semiconductor Physics to study various characteristics of optoelectronic devices. | 3                  | C,P           |
| CO5         | Apply the concept of Quantum Physics to study various phenomenon.                                 | 3                  | C,P           |

| <b>Mapping of Course</b> | outcomes                  | with Prog | ram outco | mes CO-P | Os Matrix |      |      |      |      |       |       |       |      |      |  |
|--------------------------|---------------------------|-----------|-----------|----------|-----------|------|------|------|------|-------|-------|-------|------|------|--|
|                          | Course Name (Course Code) |           |           |          |           |      |      |      |      |       |       |       |      |      |  |
| Course Code              | PO-1                      | PO-2      | PO-3      | PO-4     | PO-5      | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |  |
| CO-1                     | 2                         | 1         | _         | -        | -         | 2    | 2    | -    | -    | 2     | -     | 3     | -    | 1    |  |
| CO-2                     | 3                         | 2         | -         | -        | -         | 2    | 2    | -    | -    | 2     |       | 3     |      | 1    |  |
| CO-3                     | 3                         | 2         | -         | -        | -         | 2    | 2    | -    | -    | 2     | -     | 3     | -    | 1    |  |
| CO-4                     | 3                         | 2         | -         | -        | -         | 2    | 2    | -    | -    | 2     | -     | 3     | -    | 1    |  |
| CO-5                     | 2                         | 1         | -         | -        | -         | -    | -    | -    | -    | 1     | -     | 2     | -    | 1    |  |
| PO Target                | 2.6                       | 1.6       | -         | -        | -         | 2    | 2    | ı    | -    | 1.8   | -     | 2.8   | -    | 1    |  |





Signature of CourseCoordinator

Signature of Program Head

Asia Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B.Tech-ME                            | Academic Session: 2025-26 | Semester: I                             |
|-----------------------------------------------------|---------------------------|-----------------------------------------|
| <b>Course name: Programming For Problem Solving</b> | Course Code: IT101P       | Faculty: Ms. Nishu Gupta,               |
| Lab                                                 |                           | Dr. Preeti Garg, Mr. Omprakash Kushwaha |

| Tagging COs w    | ith BLs & KCs                                                                                              |                           |               |
|------------------|------------------------------------------------------------------------------------------------------------|---------------------------|---------------|
| CO No.           | Statement of Course Outcome                                                                                | Bloom's Cognitive Process | Knowledge     |
| After completion | of the course, the student will be able to                                                                 | Level (BL)                | Category (KC) |
| CO1              | <b>Apply</b> programming constructs of C language to solve real-world problems.                            | Apply                     | C,P           |
| CO2              | Use the concepts of looping, branching, and decision-making statements for a given problem.                | Apply                     | С,Р           |
| CO3              | <b>Develop</b> Solutions to problems using modular programming constructs such as functions and recursion. | Create                    | С,Р,М         |
| CO4              | <b>Demonstrate</b> the ability to write C programs using Array, pointers and strings.                      | Apply                     | C,P           |
| CO5              | <b>Design</b> a solution to problems using the concepts of structure, union, pointers and files handling.  | Create                    | C,P,M         |

| Mapping of Course | outcomes v                | with Progra | am outcom | es CO-PO | s Matrix |      |      |      |      |       |       |       |      |      |  |
|-------------------|---------------------------|-------------|-----------|----------|----------|------|------|------|------|-------|-------|-------|------|------|--|
|                   | Course Name (Course Code) |             |           |          |          |      |      |      |      |       |       |       |      |      |  |
| Course Code       | PO-1                      | PO-2        | PO-3      | PO-4     | PO-5     | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |  |
| CO-1              | 3                         | 3           | -         | -        | 2        | -    | -    | 1    | -    | -     | -     | 2     | -    | 2    |  |
| CO-2              | 3                         | 3           | -         | 2        | 2        | -    | -    | 1    | -    | -     | -     | 2     | -    | 2    |  |
| CO-3              | 3                         | 3           | -         | 2        | 2        | -    | -    | 1    | -    | -     | -     | 2     | -    | 2    |  |
| CO-4              | 3                         | 3           | 2         | 2        | 2        | -    | -    | 1    | -    | -     | -     | 2     | -    | 2    |  |
| CO-5              | 3                         | 3           | 2         | 2        | 2        | -    | -    | 1    | -    | -     | -     | 2     | -    | 2    |  |
| PO Target         | 3                         | 3           | 2         | 2        | 2        | -    | -    | 1    | -    | -     | -     | 2     | -    | 2    |  |

Homan

X

**Signature of Dean** 

## **Signature of Course Coordinator**

## Signature of Program Head

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B.Tech                                   | Academic Session : 2025-26 | Semester: 1 <sup>st</sup> |
|---------------------------------------------------------|----------------------------|---------------------------|
| Course name: Explorations in Electrical Engineering Lab | Course Code: EE102P        | Faculty: Dr Rajeev Kumar  |

| <b>Tagging CO</b> | s with BLs & KCs                                                                                                     |                    |               |
|-------------------|----------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| CO No.            | Statement of Course Outcome                                                                                          | Bloom's Cognitive  | Knowledge     |
| After comple      | tion of the course, the student will be able to                                                                      | Process Level (BL) | Category (KC) |
| CO1               | Understand the concepts of electric circuit solutions with DC supply using mesh-nodal analysis and Network Theorems. | 2                  | F,C,M         |
| CO2               | Apply the concepts of electrical circuits with an AC supply in a single-phase system                                 | 3                  | F,C,M         |
| CO3               | Analyze the equivalent circuit and performance of a single-phase AC transformer                                      | 4                  | F,C,M         |
| CO4               | Illustrate the working principle of induction motors, synchronous machines and DC machines.                          | 4                  | F,C,M         |

| Course Code | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 |
|-------------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| CO-1        | 2    | 2    | 2    | 2    | -    | -    | -    | -    | -    | -     | -     | 2     |
| CO-2        | 3    | 2    | 2    | 2    | -    | -    | -    | -    | -    | -     | -     | 2     |
| CO-3        | 3    | 3    | 2    | 2    | -    | -    | -    | -    | -    | -     | -     | 3     |
| CO-4        | 3    | 3    | 2    | 2    | -    | -    | -    |      | -    | -     | -     | 3     |
| PO Target   | 2.75 | 2.5  | 2    | 2    | -    | -    | -    | -    | -    | -     | -     | 2.5   |

**Signature of Course Coordinator** 

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B.Tech- ME         | Academic Session: 2025-26 | Semester: 1                      |
|-----------------------------------|---------------------------|----------------------------------|
| Course name: Communication Skills | Course Code: HS101P       | Faculty: Dr. Shraddha Srivastava |

| Tagging COs   | with BLs & KCs                                                                              |                    |               |
|---------------|---------------------------------------------------------------------------------------------|--------------------|---------------|
| CO No.        | Statement of Course Outcome                                                                 | Bloom's Cognitive  | Knowledge     |
| After complet | ion of the course, the student will be able to                                              | Process Level (BL) | Category (KC) |
| CO1           | Understand the essentials of communicating in a professional setting                        | 2                  | С             |
| CO2           | Employ correct English usage and formal style of Listening - speaking.                      | 1,2                | С             |
| CO3           | Apply the usage of verbal and non-verbal cues in presentation and day-to-day communication. | 3                  | С,Р           |
| CO4           | Illustrate Communication skills that meet the nature and objectives of the workplace.       | 3                  | С,Р           |

| <b>Mapping of Co</b> | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |             |             |      |      |       |       |       |      |      |
|----------------------|----------------------------------------------------------------|------|------|------|------|-------------|-------------|------|------|-------|-------|-------|------|------|
|                      | Course Name (Course Code)                                      |      |      |      |      |             |             |      |      |       |       |       |      |      |
| <b>Course Code</b>   | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | <b>PO-6</b> | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                 |                                                                |      |      |      |      |             |             |      | 2    | 3     |       | 1     |      |      |
| CO-2                 |                                                                |      |      |      |      |             |             |      | 2    | 3     |       | 1     |      |      |
| CO-3                 |                                                                |      |      |      |      |             |             |      | 2    | 3     |       | 1     |      |      |
| CO-4                 |                                                                |      |      |      |      |             |             |      | 2    | 3     |       | 1     |      |      |
| CO-5                 |                                                                |      |      |      |      |             |             |      | 2    | 3     |       | 1     |      |      |
| PO Target            |                                                                |      |      |      |      |             |             |      | 2    | 3     |       | 1     |      |      |

Shir

**Signature of Course Coordinator** 

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B. TECH                | Academic Session: 2025-26 | Semester:1           |
|--------------------------------------|---------------------------|----------------------|
| Course name: Indian Knowledge System | Course Code: HS164P       | Faculty: Yasir Karim |

| Tagging CO:  | s with BLs & KCs                                                                                                                            |                    |               |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| CO No.       | Statement of Course Outcome                                                                                                                 | Bloom's Cognitive  | Knowledge     |
| After comple | tion of the course, the student will be able to                                                                                             | Process Level (BL) | Category (KC) |
| CO1          | To Embrace the rich heritage and lineage of Indian Knowledge systems                                                                        | 1,2,3              | F,C           |
| CO2          | The acquaint continuous knowledge traditions of Bharata since time immemorial                                                               | 1,2,3              | F,C           |
| CO3          | To understand and apply the practical utility of the Indian Knowledge System to solve current and emerging problems of India and the world. | 1,2,3              | F,C           |

| Mapping of Cou            | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |      |      |      |           |           |       |      |      |
|---------------------------|----------------------------------------------------------------|------|------|------|------|------|------|------|------|-----------|-----------|-------|------|------|
| Course Name (Course Code) |                                                                |      |      |      |      |      |      |      |      |           |           |       |      |      |
| Course Code               | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-<br>10 | PO-<br>11 | PO-12 | PSO1 | PSO1 |
| CO-1                      |                                                                |      |      |      |      | 2    |      |      |      | 2         |           | 1     |      |      |
| CO-2                      |                                                                |      |      |      |      | 2    |      |      |      | 2         |           | 1     |      |      |
| CO-3                      |                                                                |      |      |      |      | 2    |      |      |      | 2         |           | 1     |      |      |
| PO Target                 |                                                                |      |      |      |      | 2    |      |      |      | 2         |           | 1     |      |      |

Marsh

 $\langle \! \rangle \! \langle$ 

**Signature of Course Coordinator** 

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B. Tech                    | Academic Session: 2025-26 | Semester: III              |
|------------------------------------------|---------------------------|----------------------------|
| Course name: Manufacturing Technology -I | Course Code: ME201L       | Faculty: Dr. Gaurav Sharma |

| <b>Tagging COs</b> | with BLs & KCs                                                                                                |                           |               |
|--------------------|---------------------------------------------------------------------------------------------------------------|---------------------------|---------------|
| CO No.             | Statement of Course Outcome                                                                                   | Bloom's Cognitive Process | Knowledge     |
| After completi     | on of the course, the student will be able to                                                                 | Level (BL)                | Category (KC) |
| CO1                | Apply the basic concept of metal casting.                                                                     | 3                         | F,C           |
| CO2                | Apply the working of forging in manufacturing industries.                                                     | 3                         | F,C           |
| CO3                | Apply the knowledge of rolling, wire drawing and extrusion in manufacturing industries.                       | 3                         | F,C           |
| CO4                | Understand the knowledge of sheet metal cutting operations in manufacturing industries.                       | 2                         | F,C           |
| CO5                | Understand the knowledge of additive manufacturing and powder metallurgy in advanced manufacturing processes. | 2                         | F,C           |

| Mapping of Cou | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |      |      |      |       |       |       |      |      |
|----------------|----------------------------------------------------------------|------|------|------|------|------|------|------|------|-------|-------|-------|------|------|
|                | Course Name (Course Code)                                      |      |      |      |      |      |      |      |      |       |       |       |      |      |
| Course Code    | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO1 |
| CO-1           | 3                                                              | 3    | 2    |      |      |      | 2    |      |      |       |       | 3     |      |      |
| CO-2           | 3                                                              | 3    | 2    |      |      |      | 2    |      |      |       |       | 3     |      |      |
| CO-3           | 3                                                              | 3    | 2    |      |      |      | 2    |      |      |       |       | 3     |      |      |
| CO-4           | 2                                                              | 2    | 2    |      |      |      | 2    |      |      |       |       | 3     |      |      |
| CO-5           | 2                                                              | 2    | 2    |      |      |      | 2    |      |      |       |       | 3     |      |      |
| PO Target      | 2.6                                                            | 2.6  | 2    |      |      |      | 2    |      |      |       |       | 3     |      |      |

**Signature of Course Coordinator** 

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B.Tech ME                    | Academic Session: 2025-26 | Semester: III             |
|---------------------------------------------|---------------------------|---------------------------|
| Course name: Material Materials Engineering | Course Code: ME202L       | Faculty: Dr. Anurag Gupta |
| and Metallurgy                              |                           |                           |

| Tagging COs with BLs & KCs |                                                                                                  |                    |               |  |  |  |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------|--------------------|---------------|--|--|--|--|--|--|
| CO No.                     | Statement of Course Outcome                                                                      | Bloom's Cognitive  | Knowledge     |  |  |  |  |  |  |
| After comple               | tion of the course, the student will be able to                                                  | Process Level (BL) | Category (KC) |  |  |  |  |  |  |
| CO1                        | Analyse the crystal structure to relate the material properties.                                 | 4                  | F,C,M         |  |  |  |  |  |  |
| CO2                        | Analyse the properties of ferrous and nonferrous materials.                                      | 4                  | F,C,M         |  |  |  |  |  |  |
| CO3                        | Analyse the microstructure properties and phase diagram of engineering materials.                | 4                  | F,C,M         |  |  |  |  |  |  |
| CO4                        | Apply heat treatment method to modify the material properties.                                   | 3                  | F,C,M         |  |  |  |  |  |  |
| CO5                        | Analyse effect of different alloying elements on the properties of ferrous and nonferrous alloys | 4                  | F,C,M         |  |  |  |  |  |  |

| Mapping of Co             | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |             |      |      |      |       |       |       |      |      |
|---------------------------|----------------------------------------------------------------|------|------|------|------|-------------|------|------|------|-------|-------|-------|------|------|
| Course Name (Course Code) |                                                                |      |      |      |      |             |      |      |      |       |       |       |      |      |
| Course Code               | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | <b>PO-6</b> | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                      | 3                                                              | 3    | 3    | 3    | 1    | 2           | 2    |      |      |       |       | 1     |      |      |
| CO-2                      | 3                                                              | 3    | 3    | 3    |      | 3           | 3    |      |      |       |       | 1     |      |      |
| CO-3                      | 3                                                              | 3    | 2    | 3    |      | 2           |      |      |      |       |       | 2     |      |      |
| CO-4                      | 3                                                              | 3    |      | 3    | 2    | 3           | 2    |      |      |       |       | 2     |      |      |
| CO-5                      | 3                                                              | 3    | 3    | 3    | 2    | 3           | 2    |      |      |       |       | 2     |      |      |
| PO Target                 | 3                                                              | 3    | 3    | 3    | 1    | 2           | 2    |      |      |       |       | 1     |      |      |

Ann

adri

Asin Gard

Signature of Course Coordinator

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







Program Name : B.TechAcademic Session : 2025-26Semester: 3Course name : Fluid Mechanics and MachineryCourse Code: ME203LFaculty : Mr. Sonendra

| Tagging   | g COs with BLs & KCs                                                                                                             |                       |               |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|
| CO<br>No. | Statement of Course Outcome                                                                                                      | Bloom's<br>Cognitive  | Knowledge     |
| After co  | mpletion of the course, the student will be able to                                                                              | Process<br>Level (BL) | Category (KC) |
| CO1       | Understand the fluid properties, manometers, buoyancy principle and fluid kinematics.                                            | 2                     | F,C           |
| CO2       | Apply the concepts related to the dimensional analysis, Bernoulli's equation, notches, momentum equation and flow through pipes. | 3                     | F,C           |
| CO3       | Understand the concepts related to laminar and turbulent flow and boundary layer theory.                                         | 2                     | F,C           |
| CO4       | Analyze the performance of impulse and reaction turbines.                                                                        | 4                     | F,C           |
| CO5       | Analyze the performance of centrifugal and reciprocating pumps and other hydraulic machines                                      | 4                     | F,C           |

| <b>Mapping of Co</b>                   | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |             |      |      |       |       |       |      |      |
|----------------------------------------|----------------------------------------------------------------|------|------|------|------|------|-------------|------|------|-------|-------|-------|------|------|
| Fluid Mechanics and Machinery (ME203L) |                                                                |      |      |      |      |      |             |      |      |       |       |       |      |      |
| <b>Course Code</b>                     | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                                   | 2                                                              | 2    | -    | -    | -    | -    | -           | -    | 1    | 1     | _     | -     | -    | 3    |
| CO-2                                   | 3                                                              | 3    | -    | -    | -    | -    | -           | -    | 1    | 1     | _     | -     | -    | 3    |
| CO-3                                   | 2                                                              | 2    | -    | -    | -    | -    | -           | -    | 1    | 1     | _     | -     | -    | 3    |
| CO-4                                   | 3                                                              | 3    | -    | -    | -    | -    | -           | -    | 1    | 1     | -     | -     | -    | 3    |
| CO-5                                   | 3                                                              | 3    | -    | -    | -    | -    | -           | -    | 1    | 1     | -     | -     | -    | 3    |
| PO Target                              | 2.6                                                            | 2.6  |      |      |      |      |             |      | 1    | 1     |       |       |      | 3    |

Sonendree

Signature of Program Head

Signature of Dean

**Signature of Course Coordinator** 

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B. Tech. (ME)             | Academic Session: 2025-26 | Semester: 3 <sup>rd</sup>    |
|-----------------------------------------|---------------------------|------------------------------|
| Course name: Engineering Thermodynamics | Course Code: ME204L       | Faculty: Dr. Sandeep Chhabra |

| Tagging COs with BLs & KCs |                                                                                                                |                                  |               |  |  |  |  |  |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|--|--|--|--|--|--|--|
| CO No.                     | Statement of Course Outcome                                                                                    | <b>Bloom's Cognitive Process</b> | Knowledge     |  |  |  |  |  |  |  |
| After complet              | tion of the course, the student will be able to                                                                | Level (BL)                       | Category (KC) |  |  |  |  |  |  |  |
| CO1                        | Understand basic concepts of thermodynamics and apply gas laws.                                                | 2                                | F,C           |  |  |  |  |  |  |  |
| CO2                        | Apply first law of thermodynamics on non-flow processes and steady and unsteady flow processes.                | 3                                | F,C           |  |  |  |  |  |  |  |
| CO3                        | Analyze second law of thermodynamics and apply the Principle of Increase of Entropy and the Quality of Energy. | 4                                | F,C           |  |  |  |  |  |  |  |
| CO4                        | Analyze the behavior of steam subjected to different processes.                                                | 4                                | F,C           |  |  |  |  |  |  |  |

| <b>Mapping of Co</b>      | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |             |      |      |       |       |       |      |      |
|---------------------------|----------------------------------------------------------------|------|------|------|------|------|-------------|------|------|-------|-------|-------|------|------|
| Course Name (Course Code) |                                                                |      |      |      |      |      |             |      |      |       |       |       |      |      |
| Course Code               | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                      | 3                                                              | 3    | 3    |      |      |      |             |      | 2    | 2     | 1     | 2     |      |      |
| CO-2                      | 3                                                              | 3    | 3    |      | 3    |      |             |      | 2    | 2     | 1     | 2     |      |      |
| CO-3                      | 3                                                              | 3    | 3    |      | 3    |      | 3           |      | 2    | 2     | 1     | 2     |      |      |
| CO-4                      | 3                                                              | 3    | 3    |      | 3    |      |             |      | 2    | 2     | 1     | 2     |      |      |
| PO Target                 | 3                                                              | 3    | 3    |      | 3    |      | 3           |      | 2    | 2     | 1     | 2     |      |      |

adi

Buhasha

Signature of Course Coordinator Signature of Program Head

**Signature of Dean** 

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B.TECH | Academic Session: 2025-26 | Semester: III        |
|----------------------|---------------------------|----------------------|
| Course name : COI    | Course Code: HS109L       | Faculty: YASIR KARIM |

| Tagging COs with BLs & KCs                                                        |                                                                                |                                  |           |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|-----------|--|--|--|--|--|--|--|
| CO No.                                                                            | Statement of Course Outcome                                                    | <b>Bloom's Cognitive Process</b> | Knowledge |  |  |  |  |  |  |  |
| After completion of the course, the student will be able to  Level (BL)           |                                                                                |                                  |           |  |  |  |  |  |  |  |
| CO1                                                                               | Understand the basic features & Modalities about Indian Constitution.          |                                  |           |  |  |  |  |  |  |  |
| CO2                                                                               | Clarify the functioning of Indian Parliamentary System at Center & State Level | 3                                | F         |  |  |  |  |  |  |  |
| CO3                                                                               | Understand the aspects of Indian Legal System & its related bodies             | 2                                | F         |  |  |  |  |  |  |  |
| CO4 Apply Different Laws and regulations related to engineering practices.  3 F,C |                                                                                |                                  |           |  |  |  |  |  |  |  |

| Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |             |             |      |      |       |       |       |      |      |
|----------------------------------------------------------------|------|------|------|------|------|-------------|-------------|------|------|-------|-------|-------|------|------|
| Course Name (Course Code)                                      |      |      |      |      |      |             |             |      |      |       |       |       |      |      |
| <b>Course Code</b>                                             | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | <b>PO-6</b> | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO1 |
| CO-1                                                           |      |      |      |      |      |             | 1           | 2    |      |       |       | 2     |      |      |
| CO-2                                                           |      |      |      |      |      |             | 1           | 1    | 1    |       |       | 2     |      |      |
| CO-3                                                           |      |      |      |      |      |             | 1           | 1    | 1    |       | 1     | 2     |      |      |
| CO-4                                                           |      |      |      |      |      |             | 1           | 2    | 1    | 1     | 1     | 2     |      |      |
| PO Target                                                      |      |      |      |      |      |             | 1           | 1.5  | 1    | 1     | 1     | 2     |      |      |

Mos

**Signature of Course Coordinator** 

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B. Tech.                          | Academic Session: 2025-26 | Semester: III              |  |  |
|-------------------------------------------------|---------------------------|----------------------------|--|--|
| <b>Course name: Profession Elective-1 (CAD)</b> | Course Code: ME208E       | Faculty: Mr. Ranjeet Kumar |  |  |

| Tagging   | COs with BLs & KCs                                         |                    |               |  |  |
|-----------|------------------------------------------------------------|--------------------|---------------|--|--|
| CO No.    | Statement of Course Outcome                                | Bloom's Cognitive  | Knowledge     |  |  |
| After con | apletion of the course, the student will be able to        | Process Level (BL) | Category (KC) |  |  |
| CO1       | Understand basic CAD concepts and commands.                | 2                  | С             |  |  |
| CO2       | Create 2D sketches and constrain them appropriately.       | 2                  | С             |  |  |
| CO3       | Create 3D solid models using various modeling techniques.  | 3                  | P             |  |  |
| CO4       | Understand assembly modeling and create detailed drawings. | 4                  | P             |  |  |
| CO5       | Apply CAD skills to basic design and project work.         | 5                  | M             |  |  |

| Mapping of Co      | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |      |      |      |       |       |       |      |      |
|--------------------|----------------------------------------------------------------|------|------|------|------|------|------|------|------|-------|-------|-------|------|------|
|                    | Course Name (Course Code)                                      |      |      |      |      |      |      |      |      |       |       |       |      |      |
| <b>Course Code</b> | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1               | 3                                                              | 2    | 2    |      | 2    |      |      |      |      |       |       | 3     | 3    | 2    |
| CO-2               | 3                                                              | 2    | 2    |      | 2    |      |      |      |      |       |       | 3     | 3    | 2    |
| CO-3               | 3                                                              | 2    | 2    |      | 2    |      |      |      |      |       |       | 3     | 3    | 2    |
| CO-4               | 3                                                              | 2    | 2    |      | 2    |      |      |      |      |       |       | 3     | 3    | 2    |
| CO-5               | 3                                                              | 2    | 2    |      | 2    |      |      |      |      | 2     |       | 3     | 3    | 2    |
| PO Target          | 2.6                                                            | 2.6  | 3    |      | 3    |      |      |      |      |       |       | 1.2   | 3    | 2    |

For

**Signature of Course Coordinator** 

**Signature of Program Head** 

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B.tech                      | Academic Session: 2025-26 | Semester: III                   |
|--------------------------------------------|---------------------------|---------------------------------|
| Course name: Computer Aided Product Design | Course Code: ME 210E      | Faculty: Mr. Ashish Kumar Singh |

| Tagging COs   | with BLs & KCs                                                                                                |                           |               |  |
|---------------|---------------------------------------------------------------------------------------------------------------|---------------------------|---------------|--|
| CO No.        | Statement of Course Outcome                                                                                   | Bloom's Cognitive Process | Knowledge     |  |
| After complet | ion of the course, the student will be able to                                                                | Level (BL)                | Category (KC) |  |
| CO1           | Apply CAD software, design standards, and drafting techniques used in industry.                               | 3                         | С             |  |
| CO2           | Understand engineering drawings, requirements, specifications, and select appropriate CAD tools.              | 2                         | С             |  |
| CO3           | Create 2D and 3D CAD models using industry standard CAD techniques and test models for feasibility.           | 5                         | С             |  |
| CO4           | Create technical drawings including dimensions, tolerances, manufacturing specifications, and documentation   | 5                         | С             |  |
| CO5           | Apply ethical practices in finalizing designs, storing documentation, and modifying designs based on feedback | 3                         | С             |  |

| Mapping of Cours | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |      |      |      |       |       |       |      |      |
|------------------|----------------------------------------------------------------|------|------|------|------|------|------|------|------|-------|-------|-------|------|------|
|                  | Computer Aided Product Design (ME 210E)                        |      |      |      |      |      |      |      |      |       |       |       |      |      |
| Course Code      | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1             | 3                                                              | 3    | 1    | 1    | 2    |      |      |      |      |       |       |       |      | 2    |
| CO-2             | 2                                                              | 2    | 3    | 1    | 2    |      |      |      |      |       |       |       |      | 2    |
| CO-3             | 3                                                              | 3    | 3    | 2    | 3    |      |      |      |      |       |       |       |      | 2    |
| CO-4             | 3                                                              | 3    | 2    | 2    | 3    | 1    |      |      |      |       |       | 1     |      | 2    |
| CO-5             | 3                                                              | 3    | 3    | 2    | 2    | 1    |      |      | 2    | 2     |       | 2     |      | 2    |
| PO Target        | 2.8                                                            | 2.8  | 2.4  | 1.6  | 2.4  | 1    |      |      | 2    | 2     |       | 1.5   |      | 2    |

Achish K. Singh

Signature of Course Coordinator

**Signature of Program Head** 

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B. Tech                    | Academic Session: 2025-26 | Semester: III              |  |  |  |
|------------------------------------------|---------------------------|----------------------------|--|--|--|
| Course name: Manufacturing Technology –I | Course Code: ME201P       | Faculty: Dr. Gaurav Sharma |  |  |  |
| Lab                                      |                           |                            |  |  |  |

| Tagging CO   | s with BLs & KCs                                                               |                    |               |  |
|--------------|--------------------------------------------------------------------------------|--------------------|---------------|--|
| CO No.       | Statement of Course Outcome                                                    | Bloom's Cognitive  | Knowledge     |  |
| After comple | tion of the course, the student will be able to                                | Process Level (BL) | Category (KC) |  |
| CO1          | Understand the casting process and remember various elements of gating system. | 2                  | F,C           |  |
| CO2          | Understand different operations of metal forming.                              | 2                  | F,C           |  |
| CO3          | Understand different operations of 3D printing.                                | 2                  | F,C           |  |
| CO4          | Understand different operations of sheet metal forming.                        | 2                  | F,C           |  |
| CO5          | Apply the concept of injection molding in plastic industry.                    | 3                  | F,C           |  |

| Mapping of Co | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |             |      |      |       |       |       |      |      |
|---------------|----------------------------------------------------------------|------|------|------|------|------|-------------|------|------|-------|-------|-------|------|------|
|               | Course Name (Course Code)                                      |      |      |      |      |      |             |      |      |       |       |       |      |      |
| Course Code   | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO1 |
| CO-1          | 2                                                              | 2    |      |      |      |      |             |      | 2    |       |       | 3     |      | 2    |
| CO-2          | 2                                                              | 2    |      |      |      |      |             |      | 2    |       |       | 3     |      | 2    |
| CO-3          | 2                                                              | 2    |      |      | 2    |      |             |      | 2    |       |       | 3     |      | 2    |
| CO-4          | 2                                                              | 2    |      |      |      |      |             |      | 2    |       |       | 3     |      | 2    |
| CO-5          | 3                                                              | 3    |      |      |      |      |             |      | 2    |       |       | 3     |      | 2    |
| PO Target     | 2.2                                                            | 2.2  |      |      | 2    |      |             |      | 2    |       |       | 3     |      | 2    |

Signature of Course Coordinator

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B.Tech -ME         | Academic Session: 2025-26 | Semester: III             |  |  |  |
|-----------------------------------|---------------------------|---------------------------|--|--|--|
| Course name: Material Testing Lab | Course Code: ME202P       | Faculty: Dr. Anurag Gupta |  |  |  |

| Tagging CO   | s with BLs & KCs                                                                                                           |                    |               |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|--|--|
| CO No.       | Statement of Course Outcome                                                                                                | Bloom's Cognitive  | Knowledge     |  |  |
| After comple | tion of the course, the student will be able to                                                                            | Process Level (BL) | Category (KC) |  |  |
| CO1          | Test the mechanical properties of material on Universal testing machine and also able to analyse test results.             | 4                  | F,C,M         |  |  |
| CO2          | Evaluate materials hardness and also able to analyse effect of different processes on hardness.                            | 5                  | F,C,M         |  |  |
| CO3          | Evaluate the toughness of materials by izod and charpy test.                                                               | 5                  | F,C,M         |  |  |
| CO4          | Analyse the effect of heat treatment on the same.                                                                          | 4                  | F,C,M         |  |  |
| CO5          | Evaluate the modulus rigidity through torsion test and able to analyse fatigue failure of the material using Fatigue test. | 5                  | F,C,M         |  |  |

| Mapping of Co      | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |             |             |      |      |       |       |       |      |      |
|--------------------|----------------------------------------------------------------|------|------|------|------|-------------|-------------|------|------|-------|-------|-------|------|------|
|                    | Course Name (Course Code)                                      |      |      |      |      |             |             |      |      |       |       |       |      |      |
| <b>Course Code</b> | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | <b>PO-6</b> | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1               | 3                                                              | 3    |      |      |      | 2           |             | 2    |      |       |       |       |      | 2    |
| CO-2               | 3                                                              | 3    |      |      |      |             |             | 2    |      |       |       |       |      | 2    |
| CO-3               | 3                                                              | 3    |      |      |      | 2           |             | 2    |      |       |       |       |      | 2    |
| CO-4               | 3                                                              | 3    |      |      |      |             |             | 2    |      |       |       |       |      | 2    |
| CO-5               | 3                                                              | 3    |      |      |      | 2           |             | 2    |      |       |       |       |      | 2    |
| PO Target          | 3                                                              | 3    |      |      |      | 2           |             | 2    |      |       |       |       |      | 2    |

**Signature of Course Coordinator** 

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B.Tech (ME)                    | Academic Session: 2025-26 | Semester: 3           |  |  |  |
|----------------------------------------------|---------------------------|-----------------------|--|--|--|
| Course name: Fluid Mechanics & Machinery Lab | Course Code: ME203P       | Faculty: Mr. Sonendra |  |  |  |

| Tagging COs with BLs & KCs |                                                                                     |                    |               |  |  |  |  |  |  |
|----------------------------|-------------------------------------------------------------------------------------|--------------------|---------------|--|--|--|--|--|--|
| CO No.                     | Statement of Course Outcome                                                         | Bloom's Cognitive  | Knowledge     |  |  |  |  |  |  |
| After comple               | tion of the course, the student will be able to                                     | Process Level (BL) | Category (KC) |  |  |  |  |  |  |
| CO1                        | Apply the concept of capillarity, Meta center and momentum equation.                | 3                  | C,P           |  |  |  |  |  |  |
| CO2                        | Analyze Bernoulli's equation and its applications.                                  | 4                  | C,P           |  |  |  |  |  |  |
| CO3                        | Analyze Reynold's experiment, major, minor losses and CFD analysis of laminar flow. | 4                  | С,Р           |  |  |  |  |  |  |
| CO4                        | Analyze a Pelton wheel turbine and investigate its efficiency.                      | 4                  | C,P           |  |  |  |  |  |  |
| CO5                        | Analyze a centrifugal pump and examine its efficiency.                              | 4                  | C,P           |  |  |  |  |  |  |

| Mapping of Co                            | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |      |      |      |       |       |       |      |      |
|------------------------------------------|----------------------------------------------------------------|------|------|------|------|------|------|------|------|-------|-------|-------|------|------|
| Fluid Mechanics & Machinery Lab (ME203P) |                                                                |      |      |      |      |      |      |      |      |       |       |       |      |      |
| <b>Course Code</b>                       | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                                     | 3                                                              | -    | _    | 1    | -    | -    | -    | _    | 3    | 1     | 2     | 3     | _    | -    |
| CO-2                                     | 3                                                              | -    | -    | 1    | -    | -    | -    | -    | 3    | 1     | 2     | 3     | -    | -    |
| CO-3                                     | 3                                                              | -    | -    | 1    | -    | -    | -    | -    | 3    | 1     | 2     | 3     | -    | -    |
| CO-4                                     | 3                                                              | -    | -    | 1    | -    | -    | 1    | -    | 3    | 1     | 2     | 3     | -    | -    |
| CO-5                                     | 3                                                              | -    | -    | 1    | -    | -    | 1    | -    | 3    | 1     | 2     | 3     | -    | -    |
| PO Target                                | 3                                                              | -    | -    | 1    | -    | -    | _    | -    | 3    | 1     | 2     | 3     | -    | -    |

Sonendre

**Signature of Course Coordinator** 

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B.Tech | Academic Session: 2025-26 | Semester: V <sup>th</sup> |
|----------------------|---------------------------|---------------------------|
| Course name: HMT     | Course Code: BME501       | Faculty : Mr. Sonendra    |

| Tagging CO   | s with BLs & KCs                                                                                                                                 |                    |               |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|--|
| CO No.       | Statement of Course Outcome                                                                                                                      | Bloom's Cognitive  | Knowledge     |  |
| After comple | tion of the course, the student will be able to                                                                                                  | Process Level (BL) | Category (KC) |  |
| CO1          | Understand the basic laws and mechanism of different mode of heat transfer and differential governing equations for conduction.                  | 2                  | F,C           |  |
| CO2          | Analyze rate of heat transfer through Fins and understand the transient heat conduction.                                                         | 4                  | F,C           |  |
| CO3          | Analyse heat transfer through convection for different type of surface and also understand the difference between natural and forced convection. | 4                  | F,C           |  |
| CO4          | Apply the basic laws and principles to determine rate of heat transfer through radiations.                                                       | 3                  | F,C           |  |
| CO5          | Design heat exchangers (parallel and counter flow) and understand the phenomenon of condensation, boiling, fundamentals of mass transfer.        | 5                  | F,C           |  |

| Mapping of Co      | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |             |      |      |       |       |       |      |      |
|--------------------|----------------------------------------------------------------|------|------|------|------|------|-------------|------|------|-------|-------|-------|------|------|
| HMT (BME501)       |                                                                |      |      |      |      |      |             |      |      |       |       |       |      |      |
| <b>Course Code</b> | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1               | 2                                                              | 2    | 2    | 2    | 1    |      |             |      |      |       |       |       |      |      |
| CO-2               | 2                                                              | 2    | 1    | 2    | 2    | 1    | 1           |      |      |       |       |       | 3    |      |
| CO-3               | 2                                                              | 2    | 2    | 3    | 2    | 1    | 1           |      |      |       |       |       | 3    |      |
| CO-4               | 2                                                              | 2    | 2    | 3    | 2    | 1    | 1           |      |      |       |       |       | 3    |      |
| CO-5               | 2                                                              | 2    | 2    | 3    | 2    | 1    | 1           |      |      |       |       |       | 3    |      |
| PO Target          | 2                                                              | 2    | 1.8  | 2.6  | 1.8  | 1    | `1          |      |      |       |       |       | 3    |      |

Sonerdra

Mgr

Signature of Dean

## **Signature of Course Coordinator**

## Signature of Program Head

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B. Tech.      | Academic Session : 2025-26 | Semester: V                        |
|-----------------------------|----------------------------|------------------------------------|
| Course name: Machine Design | Course Code:BME502         | Faculty: Mr. Vineet Kr. Vashishtha |

| Tagging COs with BLs & KCs |                                                                   |                                  |               |  |  |  |  |  |  |
|----------------------------|-------------------------------------------------------------------|----------------------------------|---------------|--|--|--|--|--|--|
| CO No.                     | Statement of Course Outcome                                       | <b>Bloom's Cognitive Process</b> | Knowledge     |  |  |  |  |  |  |
| After complet              | ion of the course, the student will be able to                    | Level (BL)                       | Category (KC) |  |  |  |  |  |  |
| CO1                        | Design the Machine components against static and fatigue loading. | 6                                | C,P           |  |  |  |  |  |  |
| CO2                        | Design the riveted joint, welded joints and shafts.               | 6                                | С,Р           |  |  |  |  |  |  |
| CO3                        | Design the sliding and rolling contact bearing.                   | 6                                | С,Р           |  |  |  |  |  |  |
| CO4                        | Design the Spur and Helical Gear.                                 | 6                                | С,Р           |  |  |  |  |  |  |
| CO5                        | Design of clutch, engine cylinder and piston.                     | 6                                | С,Р           |  |  |  |  |  |  |

| <b>Mapping of Co</b>      | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |             |      |      |       |       |       |      |      |
|---------------------------|----------------------------------------------------------------|------|------|------|------|------|-------------|------|------|-------|-------|-------|------|------|
| Course Name (Course Code) |                                                                |      |      |      |      |      |             |      |      |       |       |       |      |      |
| <b>Course Code</b>        | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                      | 3                                                              | 2    | 3    | 2    | 2    |      |             |      |      |       |       |       | 3    |      |
| CO-2                      | 3                                                              | 2    | 3    | 2    | 2    |      |             |      |      |       |       |       | 3    |      |
| CO-3                      | 3                                                              | 2    | 3    | 2    | 2    |      |             |      |      |       |       |       | 3    |      |
| CO-4                      | 3                                                              | 2    | 3    | 2    | 2    |      |             |      |      |       |       |       | 3    | 2    |
| CO-5                      | 3                                                              | 2    | 3    | 2    | 2    |      |             |      |      |       |       |       | 3    | 3    |
| PO Target                 | 3                                                              | 2    | 3    | 2    | 2    |      |             |      |      |       |       |       | 3    | 2.5  |

Vive

**Signature of Course Coordinator** 

**Signature of Program Head** 

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B. Tech.              | Academic Session: 2025-26 | Semester: V              |
|-------------------------------------|---------------------------|--------------------------|
| Course name: Industrial Engineering | Course Code: BME-503      | Faculty: Dr. Piyush Pant |

| Tagging COs with BLs & KCs |                                                                                                                  |                           |               |  |  |  |  |  |  |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|--|--|--|--|--|--|--|
| CO No.                     | Statement of Course Outcome                                                                                      | Bloom's Cognitive Process | Knowledge     |  |  |  |  |  |  |  |
| After comple               | tion of the course, the student will be able to                                                                  | Level (BL)                | Category (KC) |  |  |  |  |  |  |  |
| CO1                        | Analyze the concept of production system, productivity, facility and process planning in various industries.     | 4                         | С,Р           |  |  |  |  |  |  |  |
| CO2                        | Apply the various forecasting and project management techniques.                                                 | 3                         | C,P           |  |  |  |  |  |  |  |
| CO3                        | Apply the concept of breakeven analysis, inventory control and resource utilization using queuing theory.        | 3                         | С,Р           |  |  |  |  |  |  |  |
| CO4                        | Apply principles of work study and ergonomics for design of work systems.                                        | 3                         | С             |  |  |  |  |  |  |  |
| CO5                        | Formulate the mathematical models for optimal solution of industrial problems using linear programming approach. | 6                         | С,Р           |  |  |  |  |  |  |  |

| <b>Mapping of Cou</b>     | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |      |      |      |       |       |       |      |      |
|---------------------------|----------------------------------------------------------------|------|------|------|------|------|------|------|------|-------|-------|-------|------|------|
| Course Name (Course Code) |                                                                |      |      |      |      |      |      |      |      |       |       |       |      |      |
| Course Code               | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                      |                                                                |      |      |      |      |      |      |      |      |       | 1     | 3     |      |      |
| CO-2                      | 3                                                              | 3    |      | 2    |      |      |      |      |      |       | 3     | 3     |      |      |
| CO-3                      | 3                                                              | 3    |      | 2    |      |      |      |      |      |       | 3     | 3     |      |      |
| CO-4                      |                                                                |      |      |      |      |      |      |      |      |       | 3     | 3     |      |      |
| CO-5                      | 3                                                              | 3    | 2    | 3    |      |      |      |      |      |       | 3     | 3     |      |      |
| PO Target                 | 3                                                              | 3    | 3    | 2.33 |      |      |      |      |      |       | 2.6   | 3     |      |      |

heur

addi

Asin Gary

**Signature of Course Coordinator** 

**Signature of Program Head** 

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B. Tech              | Academic Session: 2025-26 | Semester: V                |
|------------------------------------|---------------------------|----------------------------|
| Course name: Advance Manufacturing | Course Code: BME 051      | Faculty: Dr. Gaurav Sharma |
| Processes                          |                           |                            |

| Tagging COs with BLs & KCs |                                                                                                             |                    |               |  |  |  |  |  |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------|--------------------|---------------|--|--|--|--|--|--|--|
| CO No.                     | Statement of Course Outcome                                                                                 | Bloom's Cognitive  | Knowledge     |  |  |  |  |  |  |  |
| After complet              | tion of the course, the student will be able to                                                             | Process Level (BL) | Category (KC) |  |  |  |  |  |  |  |
| CO1                        | Understand the concept of various non-conventional machining processes.                                     | 2                  | С             |  |  |  |  |  |  |  |
| CO2                        | Understand the advanced metal casting processes.                                                            | 2                  | С             |  |  |  |  |  |  |  |
| CO3                        | Apply the knowledge of various advance welding processes and their thermodynamic and metallurgical aspects. | 3                  | С             |  |  |  |  |  |  |  |
| CO4                        | Understand the advanced metal forming processes.                                                            | 2                  | С             |  |  |  |  |  |  |  |
| CO5                        | Understand the basic concepts of additive manufacturing processes.                                          | 2                  | С             |  |  |  |  |  |  |  |

## **Mapping of Course outcomes with Program outcomes CO-POs Matrix**

# Course Name (Course Code)

| <b>Course Code</b> | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
|--------------------|------|------|------|------|------|------|-------------|------|------|-------|-------|-------|------|------|
| CO-1               | 2    | 2    | 2    |      |      |      | 2           |      |      |       |       | 3     |      | 3    |
| CO-2               | 2    | 2    | 2    |      |      |      | 2           |      |      |       |       | 3     |      | 3    |
| CO-3               | 2    | 2    | 2    |      |      |      | 2           |      |      |       |       | 3     |      | 3    |
| CO-4               | 2    | 2    | 2    |      |      |      | 2           |      |      |       |       | 3     |      | 3    |
| CO-5               | 2    | 2    |      |      |      |      | 2           |      |      |       |       | 3     |      | 3    |
| PO Target          | 2    | 2    | 2    |      |      |      | 2           |      |      |       |       | 3     |      | 3    |

G Shaime

**Signature of Course Coordinator** 

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B. Tech.          | Academic Session: 2025-26 | Semester: V                |
|----------------------------------|---------------------------|----------------------------|
| Course name: Mechatronic Systems | Course Code: BME 054      | Faculty: Mr. Ranjeet Kumar |

| Tagging COs with BLs & KCs |                                                                               |                    |               |  |  |  |  |  |  |
|----------------------------|-------------------------------------------------------------------------------|--------------------|---------------|--|--|--|--|--|--|
| CO No.                     | Statement of Course Outcome                                                   | Bloom's Cognitive  | Knowledge     |  |  |  |  |  |  |
| After con                  | appletion of the course, the student will be able to                          | Process Level (BL) | Category (KC) |  |  |  |  |  |  |
| CO1                        | Identify key elements of mechatronic and its representation by block diagram. |                    |               |  |  |  |  |  |  |
| CO2                        | Understand the concept of sensors and use of interfacing systems.             | 2                  | С             |  |  |  |  |  |  |
| CO3                        | Understand the concept and applications of different actuators.               | 2                  | С             |  |  |  |  |  |  |
| CO4                        | Illustrate various applications of mechatronic systems.                       | 3                  | С             |  |  |  |  |  |  |
| CO5                        | Develop PLC ladder programming and implementation in real-life problems.      | 4                  | P             |  |  |  |  |  |  |

| Mapping of Co      | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |             |      |      |       |       |       |      |      |
|--------------------|----------------------------------------------------------------|------|------|------|------|------|-------------|------|------|-------|-------|-------|------|------|
|                    | Course Name (Course Code)                                      |      |      |      |      |      |             |      |      |       |       |       |      |      |
| <b>Course Code</b> | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1               | 3                                                              | 2    | 2    |      |      |      |             |      |      |       |       |       | 3    | 2    |
| CO-2               |                                                                | 3    |      |      | 2    |      |             |      |      |       |       | 3     | 2    | 3    |
| CO-3               | 2                                                              | 2    | 2    |      | 2    |      |             |      |      |       |       |       | 3    | 3    |
| CO-4               |                                                                |      | 3    |      |      |      | 2           |      |      |       |       | 3     | 3    |      |
| CO-5               |                                                                |      |      |      | 3    |      |             |      | 3    |       | 3     | 2     | 3    |      |
| PO Target          | 2.5                                                            | 2.3  | 2.3  |      | 2.3  |      | 2.0         |      | 3.0  |       | 3.0   | 2.7   | 2.8  | 2.7  |

Kon

**Signature of Course Coordinator** 

**Signature of Program Head** 

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B. TECH              | Academic Session: 2025-26 | Semester: 5th        |
|------------------------------------|---------------------------|----------------------|
| Course name: Constitution of India | Course Code: BNC501       | Faculty: Yasir Karim |

| Tagging COs with BLs & KCs |                                                                                                        |                    |               |  |  |  |  |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------|--------------------|---------------|--|--|--|--|--|--|--|
| CO No.                     | Statement of Course Outcome                                                                            | Bloom's Cognitive  | Knowledge     |  |  |  |  |  |  |  |
| After complete             | ion of the course, the student will be able to                                                         | Process Level (BL) | Category (KC) |  |  |  |  |  |  |  |
| CO1                        | Identify and explore the basic features and modalities about Indian constitution.                      | 3                  | F, C          |  |  |  |  |  |  |  |
| CO2                        | Differentiate and relate the functioning of Indian parliamentary system at the center and state level. | 4                  | F, C          |  |  |  |  |  |  |  |
| CO3                        | Differentiate different aspects of Indian Legal System and its related bodies                          | 4                  | F, C          |  |  |  |  |  |  |  |
| CO4                        | Discover and apply different laws and regulations related to engineering practices.                    | 3                  | F, C          |  |  |  |  |  |  |  |
| CO5                        | Correlate role of engineers with different organizations and governance models                         | 4                  | F, C          |  |  |  |  |  |  |  |

| Mapping of Co             | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |             |             |      |      |       |       |       |      |      |
|---------------------------|----------------------------------------------------------------|------|------|------|------|-------------|-------------|------|------|-------|-------|-------|------|------|
| Course Name (Course Code) |                                                                |      |      |      |      |             |             |      |      |       |       |       |      |      |
| <b>Course Code</b>        | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | <b>PO-6</b> | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                      |                                                                |      |      |      |      |             | 1           | 2    |      |       |       | 2     |      |      |
| CO-2                      |                                                                |      |      |      |      |             | 1           | 1    | 1    |       |       | 2     |      |      |
| CO-3                      |                                                                |      |      |      |      |             | 1           | 1    | 1    |       | 1     | 2     |      |      |
| CO-4                      |                                                                |      |      |      |      |             | 1           | 2    | 1    | 1     | 1     | 2     |      |      |
| CO-5                      |                                                                |      |      |      |      |             | 1           | 2    | 1    | 1     |       | 2     |      |      |
| PO Target                 |                                                                |      |      |      |      |             | 1           | 1.6  | 1    | 1     | 1     | 2     |      |      |

Marsh

**Signature of Course Coordinator** 

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B.Tech                   | Academic Session: 2025-26 | Semester: V           |
|-----------------------------------------|---------------------------|-----------------------|
| Course name: Heat and mass Transfer lab | Course Code: BME551       | Faculty: Mr. Sonendra |

| Tagging COs with BLs & KCs |                                                                                                                                               |                    |               |  |  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|--|--|--|--|--|--|--|
| CO No.                     | Statement of Course Outcome                                                                                                                   | Bloom's Cognitive  | Knowledge     |  |  |  |  |  |  |  |
| After complet              | ion of the course, the student will be able to                                                                                                | Process Level (BL) | Category (KC) |  |  |  |  |  |  |  |
| CO1                        | Analyze heat transfer by conduction, thermal conductivity of material experimentally.                                                         | 4                  | F, C          |  |  |  |  |  |  |  |
| CO2                        | Analyze heat transfer by convection, heat transfer coefficient for fin, pool boiling, natural convection and forced convection experimentally | 4                  | F, C          |  |  |  |  |  |  |  |
| CO3                        | Analyze heat transfer by radiation and emissivity of a surface.                                                                               | 4                  | F, C          |  |  |  |  |  |  |  |
| CO4                        | Analyze mass transfer by diffusion.                                                                                                           | 4                  | F, C          |  |  |  |  |  |  |  |
| CO5                        | Design heat exchanger and solar collector (parallel flow/ counter flow/shell and tube type)                                                   | 4                  | F, C          |  |  |  |  |  |  |  |

| Mapping of Co      | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |             |             |      |      |       |       |       |      |      |
|--------------------|----------------------------------------------------------------|------|------|------|------|-------------|-------------|------|------|-------|-------|-------|------|------|
|                    | Heat and mass transfer lab (BME551)                            |      |      |      |      |             |             |      |      |       |       |       |      |      |
| <b>Course Code</b> | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | <b>PO-6</b> | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1               | -                                                              | 2    | 2    |      | -    | -           | 1           | -    | -    | -     | -     | -     | -    | -    |
| CO-2               | -                                                              | 2    | 2    | 2    | 2    | -           | 1           | -    | -    | -     | -     | -     | 3    | 2    |
| CO-3               | -                                                              | 2    | 2    | 2    | 2    | -           | 1           | -    | -    | -     | -     | -     | 3    | 1    |
| CO-4               | -                                                              | 2    | 2    | 2    | 2    | _           | 1           | -    | -    | -     | -     | -     | -    | 1    |
| CO-5               | -                                                              | 2    | 2    | 2    | 2    | -           | 1           | -    | -    | -     | -     | -     | 3    | 1    |
| PO Target          |                                                                | 2    | 2    | 2    | 2    | -           | 1           |      |      |       |       |       | 3    | 1.25 |

Sonendra

**Signature of Course Coordinator** 

Çi

**Signature of Program Head** 

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B. Tech.           | Academic Session: 2025-26 | Semester: V                        |
|----------------------------------|---------------------------|------------------------------------|
| Course name : Machine Design Lab | Course Code:BME552        | Faculty: Mr. Vineet Kr. Vashishtha |

| Tagging COs   | Tagging COs with BLs & KCs                                        |                                  |               |  |  |  |  |  |  |
|---------------|-------------------------------------------------------------------|----------------------------------|---------------|--|--|--|--|--|--|
| CO No.        | Statement of Course Outcome                                       | <b>Bloom's Cognitive Process</b> | Knowledge     |  |  |  |  |  |  |
| After complet | ion of the course, the student will be able to                    | Level (BL)                       | Category (KC) |  |  |  |  |  |  |
| CO1           | Design the Machine components against static and fatigue loading. | 4                                | P             |  |  |  |  |  |  |
| CO2           | Design the riveted joint, welded joints and shafts.               | 4                                | P             |  |  |  |  |  |  |
| CO3           | Design the sliding and rolling contact bearing.                   | 4                                | P             |  |  |  |  |  |  |
| CO4           | Design the Spur and Helical Gear.                                 | 4                                | P             |  |  |  |  |  |  |
| CO5           | Design of clutch, engine cylinder and piston.                     | 4                                | P             |  |  |  |  |  |  |

| <b>Mapping of Co</b> | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |             |      |      |       |       |       |      |      |
|----------------------|----------------------------------------------------------------|------|------|------|------|------|-------------|------|------|-------|-------|-------|------|------|
|                      | Course Name (Course Code)                                      |      |      |      |      |      |             |      |      |       |       |       |      |      |
| <b>Course Code</b>   | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                 | 3                                                              | 2    | 3    | 2    | 2    |      |             |      |      |       |       |       | 3    |      |
| CO-2                 | 3                                                              | 2    | 3    | 2    | 2    |      |             |      |      |       |       |       | 3    |      |
| CO-3                 | 3                                                              | 2    | 3    | 2    | 2    |      |             |      |      |       |       |       | 3    |      |
| CO-4                 | 3                                                              | 2    | 3    | 2    | 2    |      |             |      |      |       |       |       | 3    | 2    |
| CO-5                 | 3                                                              | 2    | 3    | 2    | 2    |      |             |      |      |       |       |       | 3    | 3    |
| PO Target            | 3                                                              | 2    | 3    | 2    | 2    |      |             |      |      |       |       |       | 3    | 2.5  |

Vinet

**Signature of Course Coordinator** 

Signature of Program Head

**Signature of Dean** 

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B. Tech. | Academic Session: 2025-26 | Semester: V                        |
|------------------------|---------------------------|------------------------------------|
| Course name: IOT Lab   | Course Code:BME553        | Faculty: Mr. Vineet Kr. Vashishtha |

| Tagging CO   | s with BLs & KCs                                                                       |                    |               |  |
|--------------|----------------------------------------------------------------------------------------|--------------------|---------------|--|
| CO No.       | Statement of Course Outcome                                                            | Bloom's Cognitive  | Knowledge     |  |
| After comple | tion of the course, the student will be able to                                        | Process Level (BL) | Category (KC) |  |
| CO1          | Understand the concept of Internet of Things and its hardware and software components. | 2                  | F,C           |  |
| CO2          | Apply interfacing of various sensors with Arduino/Raspberry Pi.                        | 3                  | F,C,P         |  |
| CO3          | Demonstrate the ability to transmit data wirelessly between different devices.         | 3                  | F,C,P         |  |
| CO4          | Design prototype of IoT based smart system.                                            | 6                  | F,C,P,M       |  |
| CO5          | Develop IoT based projects for real life problem.                                      | 6                  | F,C,P,M       |  |

| <b>Mapping of Co</b> | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |      |      |      |       |       |       |      |      |
|----------------------|----------------------------------------------------------------|------|------|------|------|------|------|------|------|-------|-------|-------|------|------|
|                      | Course Name (Course Code)                                      |      |      |      |      |      |      |      |      |       |       |       |      |      |
| <b>Course Code</b>   | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                 | 2                                                              | 2    | _    | 2    | _    | _    | _    | -    | 2    | _     | 2     | 2     | -    | -    |
| CO-2                 | 3                                                              | 3    | -    | 3    | 3    | -    | -    | -    | 3    | -     | 2     | 2     | -    | -    |
| CO-3                 | 3                                                              | 3    | -    | 3    | 3    | -    | -    | -    | 3    | _     | 2     | 2     | -    | -    |
| CO-4                 | 3                                                              | 3    | 3    | 3    | 3    | -    | _    | -    | 3    | _     | 2     | 2     | -    | -    |
| CO-5                 | 3                                                              | 3    | 3    | 3    | 3    | -    | -    | -    | 3    | -     | 2     | 2     | -    | -    |
| PO Target            | 2.80                                                           | 2.80 | 3.00 | 2.80 | 3    | -    | -    | -    | 2.80 | -     | 2     | 2     | -    | -    |

1:west

Signature of Program Head

Signature of Dean

**Signature of Course Coordinator** 

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







Program Name : B.TechAcademic Session : 2025-26Semester: VthCourse name : Mini Project Internship AssessmentCourse Code: BME554Faculty : Mr. Sonendra

| Tagging CO   | s with BLs & KCs                                                                                                                                                                      |                    |                  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|
| CO No.       | Statement of Course Outcome                                                                                                                                                           | Bloom's Cognitive  | Knowledge        |
| After comple | tion of the course, the student will be able to                                                                                                                                       | Process Level (BL) | Category<br>(KC) |
| CO1          | Apply technical knowledge to the students to cope with industrial environment, which cannot be simulated in the classroom and hence creating competent professionals in the Industry. | 3                  | F,C              |
| CO2          | Understand possible opportunities to learn, understand and sharpen the real time technical /managerial skills required at job                                                         | 2                  | F,C              |
| CO3          | Apply the current technological developments relevant to subject area of training                                                                                                     | 3                  | F,C              |
| CO4          | Apply the experience gained from the industrial internship in the discussion held in the classrooms                                                                                   | 3                  | F,C              |
| CO5          | Create conditions conducive to quest for knowledge and its applicability on the job                                                                                                   | 5                  | F,C              |

| Mapping of Co                               | Tapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |      |      |      |       |       |       |      |      |
|---------------------------------------------|----------------------------------------------------------------|------|------|------|------|------|------|------|------|-------|-------|-------|------|------|
| Mini Project Internship Assessment (BME554) |                                                                |      |      |      |      |      |      |      |      |       |       |       |      |      |
| <b>Course Code</b>                          | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                                        | -                                                              | -    | -    | -    | -    | -    | -    | 1    | 1    | 2     | 2     | 3     | -    | -    |
| CO-2                                        | -                                                              | -    | -    | -    | -    | -    | -    | 1    | 1    | 2     | 2     | 3     | -    | -    |
| CO-3                                        | -                                                              | -    | -    | -    | -    | -    | -    | 1    | 1    | 2     | 2     | 3     | -    | -    |
| CO-4                                        | -                                                              | -    | -    | -    | -    | -    | -    | 1    | 1    | 2     | 2     | 3     | -    | -    |
| CO-5                                        | -                                                              | -    | -    | -    | -    | -    | -    | 1    | 1    | 2     | 2     | 3     | -    | -    |
| PO Target                                   |                                                                |      |      |      |      | -    | -    | 1    | 1    | 2     | 2     | 3     |      |      |

Sonerdree

Signature of Program Head

Signature of Dean

**Signature of Course Coordinator** 

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B.Tech-ME                    | Academic Session: 2025-26 | Semester: V                 |
|---------------------------------------------|---------------------------|-----------------------------|
| Course name: Soft-Skills & Verbal Ability 1 | Course Code: BASME501     | Faculty: Mr. Komal Malhotra |

| Tagging COs   | s with BLs & KCs                                                                                                                                                                                |                    |               |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| CO No.        | Statement of Course Outcome                                                                                                                                                                     | Bloom's Cognitive  | Knowledge     |
| After complet | tion of the course, the student will be able to                                                                                                                                                 | Process Level (BL) | Category (KC) |
| CO1           | <b>Apply</b> communication strategies through structured communication activities (presentations and group discussions) and evaluate their effectiveness in academic and professional contexts. | 3                  | F,C           |
| CO2           | <b>Apply</b> verbal ability by strengthening grammar and vocabulary, thereby showing better preparation for placements.                                                                         | 3                  | F,C           |
| CO3           | <b>Create</b> professional career documents and profiles (resumes & LinkedIn) and use interview preparation techniques to improve employability.                                                | 6                  | F,C           |

| Mapping of Co             | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |             |      |      |       |       |       |      |      |
|---------------------------|----------------------------------------------------------------|------|------|------|------|------|-------------|------|------|-------|-------|-------|------|------|
| Course Name (Course Code) |                                                                |      |      |      |      |      |             |      |      |       |       |       |      |      |
| <b>Course Code</b>        | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                      |                                                                |      |      |      |      |      |             |      | 2    | 3     |       | 2     |      |      |
| CO-2                      |                                                                |      |      |      |      |      |             |      | 1    | 3     |       | 2     |      |      |
| CO-3                      |                                                                |      |      |      |      |      |             |      | 2    | 3     |       | 2     |      |      |
| PO Target                 |                                                                |      |      |      |      |      |             |      |      |       |       |       |      |      |

Komal Meherotra

**Signature of Course Coordinator** 

Signature of Program Head

adi

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B.Tech | Academic Session: 2025-26 | Semester: V                         |
|-----------------------|---------------------------|-------------------------------------|
| Course name : QALR    | Course Code: BASME501-A   | Faculty: Mr. Sarvendra Pratap Singh |

| Tagging COs  | Tagging COs with BLs & KCs                                                                                           |                    |               |  |  |  |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------|--------------------|---------------|--|--|--|--|--|--|
| CO No.       | Statement of Course Outcome                                                                                          | Bloom's Cognitive  | Knowledge     |  |  |  |  |  |  |
| After comple | tion of the course, the student will be able to                                                                      | Process Level (BL) | Category (KC) |  |  |  |  |  |  |
| CO1          | Illustrate their comprehension by solving the given problems.                                                        | 2                  | С             |  |  |  |  |  |  |
| CO2          | Apply the learned concepts to new problems and solve them aptly.                                                     | 3                  | С             |  |  |  |  |  |  |
| CO3          | Make use of their thought process to interpret and draw inferences from the given data to reach logical conclusions. | 4                  | С             |  |  |  |  |  |  |

| Mapping of Co             | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |             |      |      |       |       |       |      |      |
|---------------------------|----------------------------------------------------------------|------|------|------|------|------|-------------|------|------|-------|-------|-------|------|------|
| Course Name (Course Code) |                                                                |      |      |      |      |      |             |      |      |       |       |       |      |      |
| <b>Course Code</b>        | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                      | 2                                                              | 1    |      | 1    |      | 1    |             |      |      |       |       | 1     |      |      |
| CO-2                      | 1                                                              | 1    |      | 1    |      | 3    |             |      |      |       |       | 1     |      |      |
| CO-3                      | 1                                                              | 1    |      | 1    |      | 1    |             |      |      |       |       | 3     |      |      |
| PO Target                 | 133                                                            | 1    |      | 1    |      | 1.66 |             |      |      |       |       | 1.66  |      |      |

Surf.

Signature of Program Head

Signature of Dean

**Signature of Course Coordinator** 

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name: B. Tech.                  | Academic Session: 2025-26 | Semester: VII                      |
|-----------------------------------------|---------------------------|------------------------------------|
| Course name: Renewable Energy Resources | Course Code:BOE74         | Faculty: Mr. Vineet Kr. Vashishtha |

| Tagging ( | COs with BLs & KCs                                                                                                                                                            |                       |                  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|
| CO No.    | Statement of Course Outcome                                                                                                                                                   | Bloom's Cognitive     | Knowledge        |
| After com | apletion of the course, the student will be able to                                                                                                                           | Process Level<br>(BL) | Category<br>(KC) |
| CO1       | Understand the significance of various non-conventional energy resources, their availability and limitations, working of solar cell, its material, advantages and limitations | 2                     | F/C              |
| CO2       | Apply the knowledge to select suitable solar thermal collectors to meet desired need within realistic constraints such as economic, environmental, and sustainability         | 3                     | F/C/P            |
| CO3       | Understand the system and working of non-conventional energy resources such as Magneto-hydrodynamics (MHD) generator, geothermal and fuel cell                                | 2                     | F/C/P            |
| CO4       | Analyze the optimum power generation through wind power plant and understand the system and working of thermo-electric and thermo-ionic systems                               | 4                     | F/C/P            |
| CO5       | Understand the basic systems of Ocean thermal energy conversion, wave energy plant, biomass energy system to meet the energy shortage requirement                             | 2                     | F/C/P            |

| <b>Mapping of Co</b>      | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |      |      |      |       |       |       |      |      |
|---------------------------|----------------------------------------------------------------|------|------|------|------|------|------|------|------|-------|-------|-------|------|------|
| Course Name (Course Code) |                                                                |      |      |      |      |      |      |      |      |       |       |       |      |      |
| <b>Course Code</b>        | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                      | 1                                                              | 1    | 1    |      |      |      | 2    |      | 1    |       |       | 2     |      |      |
| CO-2                      | 2                                                              | 1    | 2    |      |      |      | 2    |      | 1    |       |       | 2     |      |      |
| CO-3                      | 1                                                              | 1    | 1    |      |      |      | 2    |      | 1    |       |       | 2     |      |      |
| CO-4                      | 3                                                              | 2    | 2    |      |      |      | 2    |      | 1    |       |       | 2     |      |      |
| CO-5                      | 1                                                              | 1    | 1    | ·    |      |      | 2    |      | 1    |       |       | 2     |      |      |
| PO Target                 | 1.6                                                            | 1.2  | 1.4  |      |      |      | 2    |      | 1    |       |       | 2     |      |      |

**Signature of Course Coordinator** 

**Signature of Program Head** 

(A) dis

**Signature of Dean** 

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B. Tech.             | Academic Session: 2025-26 | Semester: 7 <sup>th</sup>    |
|-------------------------------------|---------------------------|------------------------------|
| Course name: Additive Manufacturing | Course Code: BME071       | Faculty: Dr. Sandeep Chhabra |
|                                     |                           |                              |

| Tagging COs with BLs & KCs |                                                                                                                                 |                                  |               |  |  |  |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|--|--|--|--|--|
| CO No.                     | Statement of Course Outcome                                                                                                     | <b>Bloom's Cognitive Process</b> | Knowledge     |  |  |  |  |  |
| After comple               | tion of the course, the student will be able to                                                                                 | Level (BL)                       | Category (KC) |  |  |  |  |  |
| CO1                        | Understand the basics of additive manufacturing/rapid prototyping.                                                              | 2                                | С             |  |  |  |  |  |
| CO2                        | Understand the role of additive manufacturing in the design process and the implications for design                             | 2                                | C,P           |  |  |  |  |  |
| CO3                        | Understand the processes used in additive manufacturing for a range of materials and applications                               | 2                                | С             |  |  |  |  |  |
| CO4                        | Apply the various software tools, processes and techniques that enable advanced/additive manufacturing and personal fabrication | 3                                | C,P           |  |  |  |  |  |
| CO5                        | Apply knowledge of additive manufacturing for real-life applications                                                            | 3                                | С             |  |  |  |  |  |

| Mapping of Co             | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |             |      |      |       |       |       |      |      |
|---------------------------|----------------------------------------------------------------|------|------|------|------|------|-------------|------|------|-------|-------|-------|------|------|
| Course Name (Course Code) |                                                                |      |      |      |      |      |             |      |      |       |       |       |      |      |
| <b>Course Code</b>        | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                      | 3                                                              |      |      |      |      |      | 2           |      | 1    |       |       | 2     |      |      |
| CO-2                      | 3                                                              |      |      |      |      |      | 2           |      | 2    |       |       | 2     |      |      |
| CO-3                      | 3                                                              |      |      |      | 2    |      | 2           |      | 2    |       |       | 2     |      |      |
| CO-4                      | 3                                                              |      |      |      | 2    |      | 2           |      | 2    |       |       | 2     | 2    | 2    |
| CO-5                      | 3                                                              |      |      |      | 2    |      | 2           |      | 2    |       |       | 2     | 2    | 2    |
| PO Target                 | 3                                                              |      |      |      | 2    |      | 2           |      | 1.8  |       |       | 2     | 2    | 2    |

Banabra.

Mori

Asin Gard

**Signature of Course Coordinator** 

**Signature of Program Head** 

**Signature of Dean** 

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B. Tech.              | Academic Session: 2025-26 | Semester: VII              |
|--------------------------------------|---------------------------|----------------------------|
| Course name: Measurement & Metrology | Course Code: BME 701      | Faculty: Mr. Ranjeet Kumar |

| Tagging   | COs with BLs & KCs                                                                   |                    |               |
|-----------|--------------------------------------------------------------------------------------|--------------------|---------------|
| CO No.    | Statement of Course Outcome                                                          | Bloom's Cognitive  | Knowledge     |
| After con | impletion of the course, the student will be able to                                 | Process Level (BL) | Category (KC) |
| CO1       | Describe measurement concepts and demonstrate competence in sensors and transducers. | 1                  | C             |
| CO2       | Explain and apply devices for measuring strain, pressure, and time.                  | 2                  | C             |
| CO3       | Explain and interpret devices for measuring flow, temperature, force, and torque.    | 2                  | C             |
| CO4       | Describe metrology concepts and summarize inspection methods.                        | 2                  | C             |
| CO5       | Explain surface roughness measurement and illustrate optical instruments.            | 3                  | C             |

| Mapping of Co             | Mapping of Course outcomes with Program outcomes CO-POs Matrix                       |   |   |   |   |   |   |   |   |   |   |   |   |   |
|---------------------------|--------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Course Name (Course Code) |                                                                                      |   |   |   |   |   |   |   |   |   |   |   |   |   |
| <b>Course Code</b>        | Course Code PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 PO-8 PO-9 PO-10 PO-11 PO-12 PSO1 PSO2 |   |   |   |   |   |   |   |   |   |   |   |   |   |
| CO-1                      | 3                                                                                    | 2 | - | - | 2 | - | - | - | - | - | - | - | - | - |
| CO-2                      | 3                                                                                    | 2 | - | - | 2 | - | - | - | - | - | - | - | - | - |
| CO-3                      | 3                                                                                    | 2 | 1 | 1 | 2 | - | - | - | - | - | - | - | 2 | 1 |
| CO-4                      | 3                                                                                    | 2 | - | 2 | - | - | - | - | - | - | - | - | - | - |
| CO-5                      | 3                                                                                    | 2 | - | - | 2 | - | - | - | - | - | - | - | - | 2 |
| PO Target                 | 3                                                                                    | 2 | - | 2 | 2 | _ | _ | - | _ | 1 | _ | - | 2 | 2 |

For

**Signature of Course Coordinator** 

**Signature of Program Head** 

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B. Tech.                | Academic Session: 2025-26 | Semester: VII                  |
|----------------------------------------|---------------------------|--------------------------------|
| Course name: Hybrid Vehicle Propulsion | Course Code: BAU 071      | Faculty : Dr. Ajay Singh Verma |

| Tagging   | COs with BLs & KCs                                                                |                    |               |
|-----------|-----------------------------------------------------------------------------------|--------------------|---------------|
| CO No.    | Statement of Course Outcome                                                       | Bloom's Cognitive  | Knowledge     |
| After con | repletion of the course, the student will be able to                              | Process Level (BL) | Category (KC) |
| CO1       | Understand the basics of the hybrid electric vehicles and its types               | 2                  | С             |
| CO2       | Understand the types of drivetrains in hybrid electric vehicle                    | 2                  | С             |
| CO3       | Understand the propulsion units used in hybrid vehicles and their efficiency      | 2                  | С             |
| CO4       | Understand the requirements and devices of energy storage used in hybrid vehicle. | 2                  | С             |
| CO5       | Understand the concept of downsizing of IC engines in case of hybrid vehicles.    | 2                  | С             |

| <b>Mapping of Co</b>      | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |             |      |      |       |       |       |      |      |
|---------------------------|----------------------------------------------------------------|------|------|------|------|------|-------------|------|------|-------|-------|-------|------|------|
| Course Name (Course Code) |                                                                |      |      |      |      |      |             |      |      |       |       |       |      |      |
| <b>Course Code</b>        | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | <b>PO-7</b> | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                      |                                                                |      |      |      |      | 2    | 2           |      |      |       |       |       | 3    |      |
| CO-2                      | 2                                                              | 2    |      |      | 2    | 3    | 3           |      |      |       |       |       | 3    |      |
| CO-3                      | 2                                                              | 2    |      |      | 2    | 3    | 3           |      |      |       |       |       | 3    |      |
| CO-4                      | 1                                                              | 1    |      |      | 2    | 3    | 3           |      |      |       |       |       | 3    |      |
| CO-5                      |                                                                |      |      |      | 2    | 3    | 3           |      |      |       |       | 2     | 3    |      |
| PO Target                 | 1.6                                                            | 1.6  |      |      | 2    | 2.8  | 2.8         |      |      |       |       | 2     | 3    |      |

**Signature of Course Coordinator** 

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B. Tech.                  | Academic Session: 2025-26 | Semester: 7 <sup>th</sup>    |
|------------------------------------------|---------------------------|------------------------------|
| Course name: Measurement & Metrology Lab | Course Code: BME751       | Faculty: Dr. Sandeep Chhabra |
|                                          |                           |                              |

| Tagging COs   | Tagging COs with BLs & KCs                                                                                                                                                                                                                        |                    |               |  |  |  |  |  |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|--|--|--|--|--|--|--|--|
| CO No.        | Statement of Course Outcome                                                                                                                                                                                                                       | Bloom's Cognitive  | Knowledge     |  |  |  |  |  |  |  |  |
| After complet | tion of the course, the student will be able to                                                                                                                                                                                                   | Process Level (BL) | Category (KC) |  |  |  |  |  |  |  |  |
| CO1           | Measure linear dimensions (Length, thickness, internal & external dia, depth etc) with the help of Vernier Caliper & Micrometer, angular dimensions with the help of Sine bar & Bevel Protector and rotational speed with the help of Tachometer. | 5                  | C/P           |  |  |  |  |  |  |  |  |
| CO2           | Verify the dimensional acceptability of any component using different Limit Gauges with understanding the concepts of Limit, Fit and Tolerence.                                                                                                   | 5                  | C/P           |  |  |  |  |  |  |  |  |
| CO3           | Measure the surface roughness value of any specimen.                                                                                                                                                                                              | 5                  | C/P           |  |  |  |  |  |  |  |  |
| CO4           | Measure temperature and pressure using strain gauge based measuring instruments.                                                                                                                                                                  | 5                  | C/P           |  |  |  |  |  |  |  |  |

| <b>Mapping of Co</b>      | Mapping of Course outcomes with Program outcomes CO-POs Matrix                       |   |   |  |  |  |  |  |  |  |  |      |  |  |
|---------------------------|--------------------------------------------------------------------------------------|---|---|--|--|--|--|--|--|--|--|------|--|--|
| Course Name (Course Code) |                                                                                      |   |   |  |  |  |  |  |  |  |  |      |  |  |
| Course Code               | Course Code PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 PO-8 PO-9 PO-10 PO-11 PO-12 PSO1 PSO2 |   |   |  |  |  |  |  |  |  |  | PSO2 |  |  |
| CO-1                      | 2                                                                                    | 2 | 2 |  |  |  |  |  |  |  |  | 2    |  |  |
| CO-2                      | 2                                                                                    | 2 | 2 |  |  |  |  |  |  |  |  | 2    |  |  |
| CO-3                      | 2                                                                                    | 2 | 2 |  |  |  |  |  |  |  |  | 2    |  |  |
| CO-4                      | 2                                                                                    | 2 | 2 |  |  |  |  |  |  |  |  | 2    |  |  |
| PO Target                 | 2                                                                                    | 2 | 2 |  |  |  |  |  |  |  |  | 2    |  |  |

(Schabra.

adi

Dean (ME)

**Signature of Dean** 

**Signature of Course Coordinator** 

**Signature of Program Head** 

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B.Tech                           | Academic Session: 2025-26 | Semester: VIIth        |
|-------------------------------------------------|---------------------------|------------------------|
| Course name: Mini Project Internship Assessment | Course Code: BME752       | Faculty : Mr. Sonendra |

| <b>Tagging CO</b> | s with BLs & KCs                                                                                                                                                                      |                       |                  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|
| CO No.            | Statement of Course Outcome                                                                                                                                                           | Bloom's Cognitive     | Knowledge        |
| After comple      | tion of the course, the student will be able to                                                                                                                                       | Process Level<br>(BL) | Category<br>(KC) |
| CO1               | Apply technical knowledge to the students to cope with industrial environment, which cannot be simulated in the classroom and hence creating competent professionals in the Industry. | 3                     | F,C              |
| CO2               | Understand possible opportunities to learn, understand and sharpen the real time technical /managerial skills required at job                                                         | 2                     | F,C              |
| CO3               | Apply the current technological developments relevant to subject area of training                                                                                                     | 3                     | F,C              |
| CO4               | Apply the experience gained from the industrial internship in the discussion held in the classrooms                                                                                   | 3                     | F,C              |
| CO5               | Create conditions conducive to quest for knowledge and its applicability on the job                                                                                                   | 5                     | F,C              |

| <b>Mapping of Co</b> | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |      |      |      |       |       |       |      |      |
|----------------------|----------------------------------------------------------------|------|------|------|------|------|------|------|------|-------|-------|-------|------|------|
|                      | Mini Project Internship Assessment (KME752)                    |      |      |      |      |      |      |      |      |       |       |       |      |      |
| <b>Course Code</b>   | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                 | -                                                              | -    | -    | -    | -    | -    | -    | 1    | 1    | 2     | 2     | 3     | -    | -    |
| CO-2                 | -                                                              | -    | -    | -    | -    | -    | -    | 1    | 1    | 2     | 2     | 3     | -    | -    |
| CO-3                 | -                                                              | -    | -    | -    | -    | -    | 1    | 1    | 1    | 2     | 2     | 3     | -    | -    |
| CO-4                 | -                                                              | -    | -    | -    | -    | -    | 1    | 1    | 1    | 2     | 2     | 3     | 1    | -    |
| CO-5                 | -                                                              | -    | -    | -    | -    | -    | 1    | 1    | 1    | 2     | 2     | 3     | 1    | -    |
| PO Target            |                                                                |      |      |      |      | -    | -    | 1    | 1    | 2     | 2     | 3     |      |      |

Sonendra

**Signature of Program Head** 

**Signature of Dean** 

**Signature of Course Coordinator** 

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.







| Program Name : B. Tech | Academic Session: 2025-26 | Semester: 7           |
|------------------------|---------------------------|-----------------------|
| Course Name: Project   | Course Code: BME 753      | Faculty: Mr. SONENDRA |

| Tagging COs with BLs & KCs |                                                                                                |                    |               |  |  |  |  |  |  |  |  |  |
|----------------------------|------------------------------------------------------------------------------------------------|--------------------|---------------|--|--|--|--|--|--|--|--|--|
| CO No.                     | Statement of Course Outcome                                                                    | Bloom's Cognitive  | Knowledge     |  |  |  |  |  |  |  |  |  |
| After comple               | tion of the course, the student will be able to                                                | Process Level (BL) | Category (KC) |  |  |  |  |  |  |  |  |  |
| CO1                        | Understand methods and materials and their selection to carry out experiments.                 | 2                  | С             |  |  |  |  |  |  |  |  |  |
| CO2                        | Apply the procedures with a concern for society, environment and ethics.                       | 3                  | P             |  |  |  |  |  |  |  |  |  |
| CO3                        | Analyze and discuss the results to draw valid conclusions.                                     | 4                  | P             |  |  |  |  |  |  |  |  |  |
| CO4                        | Create a report as per recommended format and defend the work.                                 | 6                  | M             |  |  |  |  |  |  |  |  |  |
| CO5                        | Evaluate the possibility of publishing papers in peer-reviewed journal/conference proceedings. | 5                  | P/M           |  |  |  |  |  |  |  |  |  |

| Mapping of Co             | Mapping of Course outcomes with Program outcomes CO-POs Matrix |      |      |      |      |      |      |      |      |       |       |       |      |      |
|---------------------------|----------------------------------------------------------------|------|------|------|------|------|------|------|------|-------|-------|-------|------|------|
| Course Name (Course Code) |                                                                |      |      |      |      |      |      |      |      |       |       |       |      |      |
| <b>Course Code</b>        | PO-1                                                           | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-10 | PO-11 | PO-12 | PSO1 | PSO2 |
| CO-1                      | 3                                                              | 3    | 3    | 3    | 3    |      |      |      | 3    | 2     | 3     |       | 3    | 2    |
| CO-2                      | 3                                                              | 3    | 3    | 3    | 3    |      |      |      | 3    | 2     | 3     |       | 3    | 2    |
| CO-3                      | 3                                                              | 3    | 3    | 3    | 3    |      |      |      | 3    | 2     | 3     |       | 3    | 2    |
| CO-4                      | 2                                                              | 2    | 2    | 2    | 2    |      |      |      | 3    | 3     | 2     |       | 2    | 1    |
| CO-5                      | 1                                                              | 1    | 1    | 2    | 2    | ·    |      |      | 3    | 3     | 2     |       | 2    | 1    |
| PO Target                 | 2.4                                                            | 2.4  | 2.4  | 2.6  | 2.6  |      |      |      | 3    | 2.4   | 2.6   |       | 2.6  | 1.6  |

Sonendra

**Signature of Course Coordinator** 

Signature of Program Head

Signature of Dean

- The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 4 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.
- The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.